September 1987 UILU-ENG-87-2258
CSG-71

COORDINATED SCIENCE LABORATORY
College of Enginecring
Nets /~ &/ 3
/N B8
95527
n2r

MEASUREMENT-BASED
RELIABILITY/
PERFORMABILITY
MODELS

Mei-Chen Hsueh

{NASA~CR-181299) MEASUREMENT-BASED N87-29850
EELIABILITY/PERFORMABILITY MODELS {Illiaois
Univ, at Urbana-Champaign) 112 p Avaail:

NTIS HC AQ6/MF A01 CSCL 14D Ugnclas

G3738 0099027

UNIVERSITY OF ILLINCIS AT URBANA-CHAMPAIGN

Approved for Public Release. Distribution Unlimited.

MEASUREMENT-BASED RELIABILITY/PERFORMABILITY MODELS

BY
MEI-CHEN HSUEH

B.S.. Providence College of Arts and Science, 1972
M.S., Portland State University, 1981

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science
in the Graduate College of the
University of Illinois at Urbana-Champaign, 1987

Urbana, Illinois

'

iii

MEASUREMENT-BASED RELIABILITY/PERFORMABILITY MODELS

‘Mei-Chen Hsueh, Ph.D.
Department of Computer Science
University of Illinois at Urbana-Champaign, 1987
Ravi Iyer, Advisor

This thesis describes measurement-based models based on real error-data collected on
a multi-processor system. Models development from the raw error-data to the estimation

of cumulative reward is described.

A workload/reliability model is developed based on low-level error and resource
usage data collected on an IBM 3081 system during its normal operation in order to evalu-
ate the resource-usage/error/recovery process in a large mainframe system. Thus, both
normal and erroneous behavior of the system are modeled. The results provide an under-
standing of the different types of errors and recovery processes. The measured data show
that the holding times in key operational and error states are not simple exponentials and
that a semi-Markov process is necessary to model the system behavior. A sensitivity
analysis is performed to investigate the significance of using a semi-Markov process, as

opposed to a Markov process, to model the measured system.

A software reliability model is also developed based on low-level error data from the
MYVS operating system running on an IBM 3081 machine to describe the software error and
recovery process. The semi-Markov model developed provides a quantification of system
error characteristics and the interaction between different types of errors. As an example,
we provide a detailed model and analysis of multiple errors, which constitute approxi-

mately 17% of all software errors and result in considerable recovery overhead.

PRECEDIWNG PAGE TLsNK ROT FILESD

iv

In addition, a measurement-based performability model based on real error-data col-
lected is proposed. A reward function, based on the service rate and the error rate in each
state, is defined in order to estimate the performability of the system and. to depict the cost

of different error types and recovery procedures.

ACKNOWLEDGEMENT

I am sincerely grateful to my thesis advisor, Ravi Iyer. for his guidance and
encouragement. His assistance was of tremendous value. I would also like to give thanks
to Professor Kishor Trivedi of Duke University for making available facilities at Duke and

for valuable suggestions which provided additional breadth to this work.

Being a member of the Computer Systems Group has provided me with a continuous
source of encouragement, suggestions, support and friendship. I would especially like to
thank Pat Duba, Mark Sloan and Rene Llames for their valuable suggestions in the drafting

of this thesis and Joe Rahmeh for his technical assistance.

Finally, I would like to thank my mother for the extensive care she provided my fam-

ily. thereby making it possible for me to do my graduate work.

TABLE OF CONTENTS

1 INTRODUCTION ...covcveemrrreessmsenessnessrsssassarsssasanesssesaessnsessasans

1.1. Thesis Objectives

1.2. Related Research

1.3. Thesis Overviewcuc........

2 RESOUCE-USAGE/ERROR/RECOVERY MODELING

- 2.1. Workload Modelingcccecoeveeeinreecieeniccneecncnsnnne

2.1.1. Resource Usage Characterization

2.1.2. Workload Clustering

2.1.3. Resource Usage Model

2.2. Error Modelingcccceeeeerveccnneccssanensencans

.....................................

.....................................

.....................................

2.2.1. Error Clusteringccceceerreamereenens

2.3. Recovery Modelingccccceceveeeersenecnnereessariccasencnens

2.4. Resource-Usage/Error/Recovery Model

....................................

.....................................

.....................................

2.4.1. Waiting and Holding Time Distributionsccccccceeeeeeeee.

2.4.2. Recovery Distributions .

2.5. Summary

3 MODEL ANALYSIS

3.1. Model Parameters

3.2. Model Behavior

10

13

14

15

17

19

23

25

26

26

32

3.3. Effect of Workload

3.4. Model Validation

3.5. Markov Versus Semi-Markov .

3.5.1. Unconditional transition probability (v)

3.5.2. First Passage Time (©)

3.5.3. Summary

4 SOFTWARE RELIABILITY MODEL

4.1. Introduction

4.1.1. Related ReSEArch ...cuucereeeuieneceernecneneeeercesanreescnns eveseesesesarnnn

4.2. Error Characterization ..

.............................

4.2.1. Multiple EITOIS .cueereriiieriecceirscnertecssnneesssassssansecsancasns

4.2.2. Recovery Modelingcceeuueevivvenierneeecsnsenncassaresssanaasssanneas

4.3. Software Reliability Modelccoueeiererrecerieneneerrenssneennseseesssssesserssasens

4.3.1. Overall Error/Recovery Modeloeunveerienneneniiicinaanens

4.3.2. Waiting Time DiStTiDULIONS ..v..vvvereerseesessressssessnecssecessces

4.3.3. Recovery Time Distribution

4.3.4. Summary

4.4. Model Analysis

ooooo

4.4.1. General CharacteriStiCs .eeeeeeeeereorereerennrerserasssseseassssasascassans

4.4.2. Model Probabilities

4.4.3. Characteristics of A Multiple Error

4.5. Conclusion

35

37

39

39

42

44

45

45

46

47

438

49

54

54

56

58

60

60

60

62

63

65

viii

5 PERFORMABILITY MODEL 66
5.1. Reward Function 66

5.2. Semi-Markov to Markov Conversion 69

5.3. Performability AnalySiScccceveeecireesnecsessincsinstennsiesnncsesnenssessssenneanenns 70

6 SUMMARY AND CONCLUSIONS 78
6.1. Summary of Results 78

6.2. Suggestions for Future Researchcocvverriecinseccseiirncscrvenescsssnsssccsneene 81
REFERENCES ... ittrcniatininissenssssesssssaneressstesssessnstssnsesstssssnsssessosssssssrsssssense 82
APPENDIX A ceiiieticnstrsiennsesesinsstssnasssstosacssssessasstossssssssssssssssssessssossassssssessssssnes 84
APPENDIX B ..ccooriirccnrirencsnirssissssisssissssessuassssesssmossssesssssssssssssessssesssasssssessssssnsasssnsesss 86
APPENDIX € ...iiieeirciinisrctssnessssnrtessamesssesssisssntossssessessassssssenssssssssssessenssrssssssossnns 95
VITA ettt st sesene s s ssatsssesastsssstesssassstissssesssssarssessssosnassssssessasassnsssanrasses 100

LIST OF TABLES

Table 2.1. Characteristics of workload clusters ...ccccccceeeeceeeeeenncen.

Table 2.2. Frequency of €ITOLSccccccciricccnencssenccnsnrecnrescsseenans

Table 2.3. Percentage distribution of recovery procedures

Table 2.4 Mean waiting time (in seconds) of states

Table 3.1. Mean time between errors conerenaeene

Table 3.2. Mean reCUrTence tiMeccccvccveseereeneaersrsseocesecnsssessanans

Table 3.3. Summary of model characteristicsccceeeemnee.e.

.................................

.................................

Table 3.4. Holding time and transition probabilities to error Statescccceeeeecsccecncnns

Table 3.5. Comparison of occupancy probabilities for different statesccccceeeeee.

Table 3.6. Comparison of transition probabilities. y; ; ..ccocoveueeeee.
Table 3.7. Ratio of ¥, ; (Markov/semi-Markov)cccoocecurcueece
Table 3.8. Ratio of 67 (Markov/semi-Markov)coccceererereeenes
Table 4.1. Frequency of SOftWare errorsco.ccceueeeeesssensnsiasenncans
Table 4.2. Percentages of recovery attempts for a software error

Table 4.3. Mean waiting time (in seconds) of states

.................................

.................................

.................................

.................................

Table 4.4. Mean time between errors

Table 4.5. Mean recurrence time of recovery

Table 4.6. Characteristics of software error/recovery model

Table 4.7. Characteristics of a multiple error ...

Table 5.1. Reward rates, r;, for error states

15

16

21

33

34

35

36

38

41

42

44

48

54

56

61

61

62

64

67

Figure 2.1.

Figure 2.2 State-transition diagrams of I/0 bound load

Figure 2.3.

LIST OF FIGURES

State-transition diagrams of CPU bound load

..........................

Flow chart of recovery processes

Figure 2.4. State-transition diagram of resource-usage/error/recovery model

Figure 2.5.
Figure 2.6.
Figure 2.7.
Figure 4.1.
Figure 4.2.
Figure 4.3.
Figure 4.4.
Figure 4.5.
Figure 4.6.
Figure 5.1.
Figure 5.2.
Figure 5.3.
Figure 5.4.

Figure 5.5.

State-transition diagram for multiple errors (MULT)
Waiting and holding time densitiescccceeienvuernierrnerenees
Error duration densitiesccccocveveiincmerrssirencsncecsnccennes

State-transition diagram for a multiple error

Reduced state-transition diagram of multiple errors

Flow of recovery cereesrensersennras
Software error/recovery modelc.covvmieiiicrcenrinieennneenan.
Time to error densSilyccccccireeccssssnreccssseerssssnsesscssesanens

Recovery time (error duration) densitiescccceeverececcene

..........................

..........................

..........................

..........................

..........................

..........................

The conversion of non-exponential to a set of exponentialscccceeeeueeeee

The Markov conversion of State Wy

The expected reward rate, E[X(£)] .ccccoeeereecerencacanraracecnns

The time-averaged accumulated reward. E[Y(¢))/e ...

......

Distribution of accumulated reward until system failure

.........................

11

12

16

17

19

22

24

50

51

53

35

57

59

71

72

75

76

77

CHAPTER 1

INTRODUCTION

1.1. Thesis Objectives

The development of realistic models to describe the error behavior of computer sys-
tems is a difficult problem. Although many researchers have addressed the modeling issue
and have significantly advanced the state of the art, there is little or no validation of these
models with field data. It is, therefore, extremely valuabie to model the error and recovery
process in a production system using real error data. Apart from providing useful informa-
tion on how errors occur, this process also provides insight into the interaction between
various system components. Additionally, it will be seen that it also allows explicit model-
ing of the relationship between resource usage and hardware and software errors, an area

that has yet to be fully explored.

In this fsearch we build a state-transition model which describes the resource-
usage/error/recovery process of a computer system. This model is based on low-level error
and resource usage data collected on a production system. The data were collected on an
IBM 3081 system during its normal operation. Both the normal and erroneous behavior of
the system are modeled. The results, therefore, provide an understanding of the different
error and recovery processes and their relationship to various types of resource usage.

Hardware and software reliabilities and their interaction are also modeled. Results show

that the error and recovery process on our measured system is best described by a semi-

Markov process.

1.2. Related Research

The primary motivation for this research is that there has been no attempt to expli-
citly model the resource-usage/error/recovery process based on real data. The only
research is that in [1.2], where the authors proposed the use of a double stochastic Poisson
process to model a cyclic load-error relationship. The model assumes that the instantaneous
error rate can be described by a cyclostationary Gaussian process (i.e., the workload has a
cyclic pattern). Thus only the external behavior has been modeled. Furthermore, only a

single workload variable (time spent in the kernel mode) was modeled.

Analytical models for hardware failure have been extensively investigated
[3.4,5.6.7,.8]. Although the time for different components to fail is usually assumed to be
exponentially distributed, time-dependent failure rates and graceful degradation have been
considered along with performability issues. Repairability has been modeled by Trivedi, et.
al., [3.5,6,8], all of which assume constant repair times. A job/task flow based model is
described in [9]. Failure occurrence is assumed to be a linear function of the service
requests from a job/task flow. As shown in [10], the assumption of linearity may result in

underestimating the effect of the workload, especially when the load is high.

Most software reliability models usually refer to the development, debugging and
testing phases of the software as in [11,12] and [13.14]. Few of these models have been
applied to the operational phase of the software. In [2] and [15], software failures in an

operating environment are studied. Both studies found that at least 60% of system failures

are software related. Another study [16] shows that undetected software-related errors are

due to either specification errors, implementation errors, or logic errors.

There is little explicit study of hardware/software ' reliability. = The
hardware/software interface is generally hard to model and experimental measurements
are not easy to obtain and analyze. In [15], software failures in the operating system,
which could be related to hardware problems, were analyzed and it was shown that errors
in the hardware/software interface are often fatal. In [17]. a methodology for joint
hardware/software model construction and model processing using Stochastic Petri Nets is

described.

With the exception of the software reliability growth models, which have been vali~
dated with real data, there are few, if any, models of software reliability in an operational
environment. Exceptions include the hardware and software model discussed in [18] and a
measurement-based model of workload dependent failures discussed in [10]. Both, how-
ever, only describe the external behavior of the system and do not provide insight into com-

ponent level behavior.

It is therefore highly instructive to construct a detailed model based on low-level
error data from a production system. Toward this end we have constructed a joint
resource-usage/error/recovery model using error and resource usage data collected from an
IBM system. The model provides detailed information on system behavior under normal
and error conditions. Hardware and software failures of different severity are modeled.

Multiple errors and the effect of on-line recovery routines are also considered.

1.3. Thesis Overview

A methodology for model construction based on real error data and resource usage
information is described in Chapter 2. The model construction includes the resource usage
(workload) chﬁracterization. error and recovery characterization. and modeling the overall
system. For the workload characterization, we use a statistical clustering method to
characterize the collected resource usages of the measured system from an n-tuple variable
of infinite points into a few number of sets. Thus, a state-transition model of resource

usages of the system is constructed based on these sets.

Different types of component errors and recovery procedures are also described in
detail and classified in Chapter 2. A two-level error data reduction scheme is employed to
identify individual error incidents and ensure that the analysis is not biased by error
records relating to the same problem. The interaction of hardware and software errors is
modeled in this chapter. The three models describing resource usage, error and recovery are
then combined to form an overall model. The conditional transition probabilities as well
as the sojourn times of states are estimated from real data. Results show that the

resource-usage/error/recovery process is a semi-Markov process.

In Cha;.)ter 3 we perform four different kinds of model analyses to show the charac-
teristics of the measured system. First, we use the model built in Chapter 2 to evaluate
key characteristics of the system, such as the state occupancy probability and the uncondi-
tional transition probability from one specified state to another. These measures provide us
with a very fair estimation of the model behavior. Second, we estimate the error probabil-
ity due to the workload from the model. The analysis shows that the error probabilities
appear to be not only a function of the resource usage, but are also related to the length of

the sojourn time in a resource usage state. Third, the model validation is performed by

comparing the results predicted from the model with the values estimated from the actual
observations. Finally, we perform an analysis to investigate the significance of using a

semi-Markov process, as opposed to a Markov process, to model the measured system.

In Chapter 4 a measurement-based software reliability model is built. In addition to
describing the software error and recovery process in the measured system this model also
provides a quantification of software system error characteristics and the interaction

between different types of software errors.

A performability model based on real data is proposed in Chapter 5. A reward func-
tion, based on the service rate and the error rate in each state, is defined in order to estimate
the performability of the measured system and to depict the cost of different error types
and recovery procedures. The conversion of a semi-Markov model to its Markov version is
also demonstrated in this chapter. This conversion gives us the ability to use an existing

system performance estimator to estimate the performability of the measured system.

In Chapter 6 we provide a summary of this research and highlight some important

conclusions drawn from this work.

CHAPTER 2

RESOUCE-USAGE/ERROR/RECOVERY MODELING

2.1. Workload Modeling

In this section we build a state-transition model to describe the variation in system
activity. It will later be shown that this approach allows an error to be considered as a
transition from normal activity. System activity is characterized by a number of resource
usage parameters. A statistical clustering techr;ique is employed to reduce the potential
many to many transitions of the workload vector to a small number of states representa-
tive of those found in the data. The data for our studies came from an IBM 3081 system
running the MVS operating system. The system consists of dual processors with two
time-multiplexed channel sets. Together these two sets allow a maximum of 24 subchan-

nels to be simultaneously active in each I/O cycle.

2,1.1. Resource Usage Characterization

The workload data was collected using the IBM MVS/370 system Resource Manage-
ment Facility (RMF) [19]. RMF is a flexible tool for measuring the performance of an IBM
system. It measures data in two ways: by exact count and by sampling. The exact count
method checks the appropriate system indicators at the beginning and the end of an interval
and calculates the difference. The sampling method checks the appropriate system indica-

tors at each cycle within an interval (e.g.. an interval may be one hour and a cycle may be

500 milliseconds). At the end of the interval the mass of data collected at each cycle is
reduced to either minimum, maximum, and average values or to a percentage value. The
results presented here are based on three months of sampled RMF data, with a cycle time of

500 milliseconds and an interval of one hour.

Four different resource usage measures were selected to represent the workload of

three basic components of the computer hardware system.

CPU - fraction of the measured interval for which the CPU is executing instructions

CHB - fraction of the measured interval for which the channel was busy and the
CPU was in the wait state (this parameter is usually used to measure the degree
of contention in our system)

SIO - number of successful Start I/O and Resume I/O instructions issued to the
channel
DASD - number of requests serviced on the direct access storage devices

Although several other measures were available, we decided to use only the measures listed
above so as to keep the model trackable. The methodology presented here is easily extended

to incorporate other measures.

2.1.2. Workload Clustering
At any interval of time the measured workload is représented by a point in 4~
dimensional space, (CPU, CHB, SIO, DASD). Cluster analysis is used to divide the work-

load into similar classes according to a pre-defined criterion.! This allows us to concisely

describe the dynamics of system behavior and extract a structure that already exists in the

1Potentially, we can have an uncountably large number of points in the workload space. Intuitively, only a
countable number of combinations of four measures do in fact occur. Further, it is seen that they usually occur in
clusters.

S D TE G I O R R B G G A O S O I S e =

workload data.? Each cluster (defined by its centroid) is then used to depict a system state

and a state-transition diagram (consisting of inter-cluster transition probabilities and clus-

ter sojourn times) is developed.

A k-means clustering algorithm [21,22] was used for cluster analysis. Briefly, the
algorithm partitions an N-dimensional population into & sets on the basis of a'sample. It
starts with k groups each of which consists of a single random point. Each new point is
added to the group with the closest centroid. After a point is added to a group, the mean of
that group is adjusted in order to take the new point into account. This process is repeated
until the changes in the cluster means become negligibly small. Thus at each stage the k-
means are. in fact, the means of the groups they represent. Therefore, ¥ non-empty clus-
ters, C,.C,.....C,. are sought such that the sum of the squares of the Euclidean distances of

the cluster members from their centroids is minimized. i.e.,

k
= 12 .
z Xllx=x;11° — minimum
=1 i

where x; € C; and %, is the centroid of cluster C;.

Two types of workload clusters were formed. In the first case CPU and CHB were
selected to be the workload variables. This combination was found to best describe the
CPU-bound load (nearly 60% of the observations have a CPU usage greater than 0.72). In
the second case the clusters were formed considering SIO and DASD as workload variables.
This combination was found to best describe the I/O workload. Table 2.1 shows the results

for these two cases.

An examination of Table 2.1 also shows the dynamics of the measured system

behavior. We see in Table 2.1(a) that about 36% of the time the CPU is highly loaded

2 Similar clustering techniques are also used for workload characterization in [20).

Table 2.1. Characteristics of workload clusters

(a) CPU workload
Cluster % of Mean Mean || Stddev | Std dev
id obs of CPU | of CHB || of CPU | of CHB
A 7.44 | 00981 | 0.1072 || 0.0462 | 0.0436
W, 0.50 | 0.1126 | 0.5525 || 0.0433 | 0.0669
W, 2.73 | 0.1547 | 02801 || 0.0647 | 0.0755
W, 12.41 | 03105 | 0.1637 || 0.0550 | 0.0459
W 0.74 | 03639 | 0.3819 | 0.0365 | 0.1923
Wy 17.12 | 05416 | 0.1287 || 0.0560 | 0.0511
W, 22.58 | 0.7207 | 0.0848 || 0.0576 | 0.0301
Ws 36.48 | 09612 | 0.0168 || 0.0362 | 0.0143
R*of CPU= 09724
R’of CHB= 0.8095
overall R*= 0.9604
(b) /O workload
Cluster % of Mean Mean Std dev | Std dev
id obs | of SIO | of DASD || of SIO | of DASD
U, 8.89 16.80 | 095 6.80 1.30
U, 36.05 41.59 2.9 7.51 1.92
U, 1.48 437 | 20.62 8.55 4.18
U, 1.73 60.07 | 38.84 6.77 8.42
Us 2.72 67.34 5.19 7.92 3.72
Ug 0.49 87.30 | 31.19 3.87 9.84
U, 7.9 96.20 | 6.02 8.73 3.34
Us 0.74 | 14110 [10.10 10.28 8.50
R of SIO = 0.8861
R®of DASD= 0.7176
overall R*°= 0.8751

10

(0.96) and almost 76% of the time the CPU load is above 0.5. Since the measured system is
a two-processor machine, we may say that 76% of the time at least one of the processors is
busy. Note that, with increasing CPU usage, CHB (CPU wait and channel busy) decreases.
This indicates that resource contention is not a problem in our measured system. In Table
2.1(b) (the 1/0 load). both clusters U, and U, have a very close channel start I/O rate (SIO)
but the disk service rate (DASD) of U, is as much as 10 times that of U,. This indicates
that some I/O requests result in a burst of data while the others only in a few words. A
burst transfer however occurred only 4% of the time (U, + U, + U¢). This result may be
due to the fact that our measurements were made during work hours, but I/O-bound jobs

are normally executed during off-work hours.

2.1.3. Resource Usage Model

State-transition diagrams of these two different types of workload clusters are shown
in Figure 2.1 and Figure 2.2. The transition probabilities from state i to state j, p; ;. are

estimated from the measured data using:

observed number of transitions from state i to state j : 3.1.1)
Py = .) : -1
observed number of transitions from state i

These two figure provide us with not only the details of workload dynamics but also the
interactions among clusters. Figure 2.1 shows that once the CPU load reached 0.5 (W), the
transition of the greatest probability was to its next higher load (W,) and the transition to
its next lower load (W‘) occurred with the second greatest probability. This can be seen
in states W,, W, and W,. However, when the CPU load is low (i.e.. less than 0.5), the

change to a higher load is much faster. For example, with 0.333 probability the CPU load

changed from W, to W, 5 and 0.424 probability from W, to W,. T T e

0.162
0.351 0.037

0.037

0.50

-0.409
0.108

0.41§

0.107

0.02 . 0.091 0.216

Figure 2.1. State-transition diagrams of CPU bound load

11

0.135

12

0.162

0.15

Figure 2.2 State-transition diagrams of I/0 bound load

Figure 2.2 shows the transitions among various IO loads. This figure confirms our
previous observation that most often the I/O workload fluctuates back and forth between
two moderate levels. U, and U (0.69 and 0.56) and that there are occasional requests for

burst /0 (0.025 from U, and 0.012 from U to U).

.

2.2. Error Modeling

13

In this section the collection and characterization of errors is discussed. A state-

transition diagram to describe different error states is developed. The measured system

incorporates built-in error detection facilities, and many components also provide for

recovery through retry or redundancy. The error and recovery information is logged into a

permanent data set called LOGREC [23]. For each error, whether recoverable or not. the

operating system creates a time-stamped record describing the error and providing relevant

information on the state of the machine. In each record there are a number of bits describ-

ing the type of error, its severity, and the result of hardware and software attempts to

recover from the problem. From this data six different types of errors were collected :

(1) CPU-related errors

(2) Temporary channel errors

(3) Temporary (soft) disk errors

(4) Temporary (hard) disk errors

(5) Permanent disk errors

(6) Software errors

- those that affect the normal operation of the CPU;
the errors may originate in the CPU itself, in the
main memory, or in a channel,

-those that are recovered by channel retry and do not
result in the termination of the channel control pro-
gram,

- those I/0 errors that are recovered by correcting the
data or by retrying the hardware instruction,

- those I/0 errors that are recovered by software
instruction retry or by a functional recovery
routine(s),

- those I/0 errors that are not correctable and can not
be recovered by retrying the operation, and

- software incidents that are due to invalid supervi-
sor calls, program checks and other software excep-
tion conditions.

14

2.2.1. Error Clustering

Due to the manner in which errors are detected and reported in a computer system, it
is possible that a single fault may manifest itself as more than one error, depending on the
activity at the time of the error. The different manifestations may not all be identical [24].
The system recovery usually treats these errors as isolated incidents. In order to address
this problem and to ensure that the analysis is not biased by error records relating to the

same problem, two levels of data reduction were performed.

First, a coalescing algorithm described in [10] was used to analyze the data and merge
observations which occur in rapid succession and relate to the same problem. Next, a tech-

nique described in [24] to automatically group records most likely to have a common cause,

was used (See Appendix A for the details).’ By using these two methods, we classified

errors into five different classes. These classes are called error events since they may con-

tain more than one error and are defined as follows.

CPU: that caused errors to be logged as CPU-related errors

CHAN : that caused errors to be logged as channel errors

SWE: that caused errors to be logged as software errors

DASD: that caused errors to be logged as direct access storage device errors
MULT : that caused errors affecting more than one type of component

Table 2.2 lists the frequencies of different types of errors. In this table we found that
about 80% of errors are disk and software errors. We also note that about 17% of the errors
are classified as multiple errors (MULT). A MULT error is mostly due to a single cause but

the fault has non-identical manifestations provoked by different types of system activity.

3Although this second reduction is not essential to this work, it allows us to notice several multiple errors
which otherwise would not have been noticed.

15

Since the manifestations are non-identical, recovery may be complex and hence imposes
considerable overhead on the system. It should be noted that such an error event (17% of

our data) has not been modeled before.

2.3. Recovery Modeling

When an error is detected in the measured system. an appropriate recovery routine is
invoked depending on the severity of the error. The recovery procedures were divided into
four categories in increasing order of recovery cost. The recovery cost was measured in
terms of the system overhead required to handle an error. The lowest level (hardware
recovery), involves the use of an error correction code (ECC) or hardware instruction retry
and has minimal overhead. If hardware recovery is not possible (or unsuccessful), the next
level, i.e., software controlled recovery. is invoked. This could be simple, e.g.. terminating
the current program or task in control, or complex, e.g.., invoking a specially designed
recovery routine(s) to handle the problem. The third level of recovery (ALT) involves

transferring the tasks to a functioning processor(s) when one of the processors experiences

Table 2.2. Frequency of errors

Type of error {| Frequency | Percent
CPU 2 0.04
CHAN 119 223
MULT 924 17.33
SWE 1923 36.07
DASD 2364 44.34
total 5332 100.00

16

an un-recoverable error. If no on-line recovery is possible, the system is brought down for
off-line repair. Figure 2.3 shows a flow chart of the recovery process. Table 2.3 lists the

distribution of recovery levels. From Table 2.3 we note that about 73% of errors were

successful

SWE SWR successful
failed
AI?T\ successful _

\

f aiied

OFFL successful

Figure 2.3. Flow chart of recovery processes

Table 2.3. Percentage distribution of recovery procedures

Recovery Procedure || Percent
HWR 73.35
SWR 26.56
ALT 0.02
OFFL 0.07

' v i

17

successfully handled through hardware recovery and most of the others were recovered

from by use of the software recovery procedure.

2.4. Resource-Usage/Error/Recovery Model

In this section we combine the separate workload, error and recovery models,

developed so far, into a single model shown in Figure 2.4. A null state W, is added to

to good
workload
states

Figure 2.4. State-transition diagram of resource-usage/error/recovery model

18

represent the state during the non-measured period although it is not shown in Figure 2.4.
The transition probabilities among states are estimated from the measured data using Equa-
tion 2.1.1. Notice that. unlike other models this describes both the normal and erroneous
behavior of the system. The model has three different classes of states: normal operation
states (Sy), error states (Sg), and recovery states (Sp). Note that the normal state has two

different types of transitions: the first, to other normal states and the second. to error

states.

Under normal conditions, the system makes transitions from one workload state to
another. The occurrence of an error results in a transition to one of the error states. The
system then goes into one or more recovery modes after which, with a high probability, it
returns to one of the "good” workload states. The state-transition diagram of Figure 2.4
shows that nearly 98.3% of the hardware recovery requests and 99.7% of the software
recovery requests are successful. Thus the error detection, fault isolation and on-line
recovery mechanism allow the measured system to handle an error efficiently and

effectively. In only less than 1% of the cases is the system not able to recover.

Figure 2.5 shows the state-transition diagram of a MULT error (a MULT event), i..,
given that a multiple error has occurred. The model shows that disk and software errors
are strongly correlated in multiple errors. From the diagram, it is seen that in about 65% of
the cases a multiple en.'or starts as a software error (SWE) and in 32% of the cases it starts
as a disk error (DASD). Given that a disk error has occurred there is nearly a 30% chance
that a software error will follow. It is also interesting to note that there is a 64% chance

that one software error will be followed by another different software error.

19

from good
workload

647

workload
states

Figure 2.5. State-transition diagram for multiple errors (MULT)

2.4.1. Waiting and Holding Time Distributions

We used the state-transition diagram to show the relationship among the workload,
error, and recovery processes in the measured system. We also showed the interactions
among the errors. In this subsection we will present the characteristics of the measured

system in terms of the state waiting and holding times.

20

The waiting time for state i is the time that the process spends in state i before mak-
ing a transition. The holding time for a transition from state i to state j is the time that
the process spends in state i before making a transition to state j [25]. Table 2.4 shows the
mean waiting times of both the workload and error states. It is well-known that the mean
and standard deviation of an exponential distribution are the same. Thus an examination of
the mean and standard deviation of the waiting times in Table 2.4 appears to indicate that
not all waiting times are simple exponentials. This is particularly pronounced in Table

2.4(c) which refers to the error states.

Figure 2.6 shows the densities of waiting and holding times for one of the CPU load
states, W, (see Appendix B for all states). Figure 2.6(a) shows the waiting time for Wy,
and Figure 2.6(b) and 2.6(c) represent the holding times from state W4 to DASD and SWE

error states. These densities are fitted to phase-type exponential density functions [26].

f@)= 3 a,g,(t).

i=l
n

where @¢; 20, Y a; =1, and n is the number of phases. The g;(¢) function can be a simple

i=1
exponential, a multi-stage hyperexponential, or a multi-state hypoexponential density

function. The definitions of these three types of exponential functions are listed below.

(1) Exponential: g(¢) = Ae™.

r -\t r
(2) Hyperexponential: g(¢)= Y o;\;e ' ,where);>0,;20,and Ja; =1.

i=1 i=1

" -At
(3) Hypoexponential: g(¢) = YT aMe ', where A,>0, A&\, if i#j. and

i=1

Table 2.4 Mean waiting time (in seconds) of states

(a). CPU bound workload states

of Mean Standard | Std error

State {| obs wa.iting time | deviation | of mean
w, 53 1263.71 1384.20 190.13
W, 2 289.65 1.19 0.84
W, 20 698.79 913.30 204.22
W, 130 1203.05 1130.28 99.13
Wy 11 613.74 421.73 127.16
W 147 1380.86 1588.76 131.04
w, 268 1071.31 1004.46 61.36
W 266 1612.72 2576.35 157.97

(b). I/0 workload states

of Mean Standard | Std error

State || obs | waiting time | deviation | of mean
U, 45 1221.75 1475.70 219.98
U, 316 1453.19 1530.75 86.11
U, 12 1437.15 1452.86 419.40
U, 18 1137.41 616.67 145.39
Us 420 1243.63 1550.49 75.66
Ug 4 1696.85 1540.19 770.10
u, 86 937.45 1127.57 121.59
Ug 9 387.74 176.96 58.99

(c). Error states

of Mean Standard | Std error

State obs waitinﬂime deviation | of mean
CHAN 13 5.08 18.31 5.08
SWE 201 41.35 103.35 7.29
DASD 401 120.86 223.89 11.18
MULT 77 293.28 262.84 29.95

21

22

Prob.

) 20 40 60 80 100 120 140
Duration (minutes)

(a) Waiting time density of state W5 (CPU = 0.96)

% 4] Nl 2 AN N

N

0 20 40 . 60 80 100 120

Duration (minutes)

(b) Holding time density from state W, to state DASD

Prob. ["\~ """ Tt s T oS s s s e e m e]

120

Duration (minutes)

(¢) Holding time density from state W to state SWE

Figure 2.6. Waiting and holding time densities

3

| =======-

Thus the graphs in figure 2.5 were fitted to the following functions (tested by using the

Kolmogorov-Smirnov test [26] at the 0.01 significance level).

(1). waiting time : f(¢) = 0.000146¢ %% + 0.000939¢ %1% 4 .000033¢ 00002102
.toa error: f(¢)=0. 004 . 0.0008 e —e

(2). to a DASD £ (€) = 0.00094¢ % + 0.0008355(e 701" — 7000653

(3). to a SWE error : f (¢) = 0.00085¢ %% + 0.000701(e 2000716 _ 0004685)

2.4.2. Recovery Distributions

In our data. the selection of the destinations from any state of S, was found to be

independent of the holding time distribution. Further, for our system the time taken for

each type of recovery can reasonably be considered constant. The overall recovery time,
i.e., the duration of an error event (or the holding time in an error state), however was not

constant since an error event may involve more than one recovery attempt. This time is

computed as the time difference between the first detected error and the last detected error_

caused by the same event. The duration of an error event can be used to measure the
effectiveness of recovery from this event and also the severity of error. Figure 2.7 shows

examples of error duration densities for three different types of errors. Again, the follow-

ing phase-type exponential densities were fitted to the graphs shown in Figure 2.7 (tested-at-- - -

the 0.01 significance level).

(1) DASD: f(z) = 0.0375¢ ™™ + 0.007¢ ™Y + 0.008635¢ 04562

+ 0.0001861¢ 2002137

(2Q)SWE: f(z) = 0.041181e *“*¥ 4+ 0.0002704e 3™

Prob.

0 2 4 6 8 10 12 14
Duration (minutes)

(a) DASD error duration density

Prob. 0.5 L 1
o_o L " " " " o\ M M . n
6 8 10 12 14
Duration (minutes)
(b) SWE error duration density

0.10
Prob.0.05 |

0.00

Duration (minutes)

(¢) MULT error duration density

Figure 2.7. Error duration densities

i
1
H

- oam =

}

! |
'-‘a--'--—
!
}
: 4

(3) MULT: f(¢) = 0.004371(e™%0%81% _ g=0.0301092

2.5. Summary

In summary, we have developed a state-transition model which describes the normal

and error behavior of the system. Some key characteristics of the model are: R

(€)) workload dynamics are explicitly described,
(2) error/recovery is explicitly described,

(3) waiting times in some workload and in most error states can not be modeled as sim~
ple exponentials, and

(4) the holding times from a given workload state to various error states are dependent
on the destinations.

Thus, the resource-usage/error/recovery process is modeled as a complex irreducible semi-
Markov process with the state OFFL as recurrent, making the overall model ergodic.
Furthermore, the process is not an independent semi-Markov process since the waiting and

holding time distributions are distinct for some states.

26

CHAPTER 3

MODEL ANALYSIS

Now that we have an overall model, we show the usage of this model to predict key
system characteristics. The mean time between different types of errors is evaluated along
with model characteristics such as the occupancy probabilities of key error and workload
states. Since the normal state transitions are also available, we can explicitly examine those
states which are crucial from a error viewpoint. In order to evaluate the model behavior,
the model parameters, however, have to be defined and then the derivations of the measures
can be carried out. Thus in the next section we provide the definitions of the model parame-~

ters and the derivations of some important measures.

3.1. Model Parameters

From Chapter 2 we know that the measured system is best modeled as a semi-Markov

process. Assume that M is an n -state semi-Markov model and given a stochastic transition

n
. 2;;20.i=12...n, j=12,.n, T p;;=1. and a holding time
i=1

probability matrix P = [pi J

density function matrix H (t) =

h; ; ()

, t€(0,00), the mean holding time of the process

staying in state i before making transition to state j, 7, ;. is

27
7, = [t hy,(e)de (3.1.1)
t=0

We mentioned that in Section 2.4.1 the waiting time for state i is the time that the process
spends in state i before making a transition. Thus, a waiting time is merely a holding time
that is unconditional on the destination state. Hence the mean waiting time 7; is related to

the mean holding time 7; ; by

n
7= LpijTi; - (3.1.2)

j=1
Suppose that a process has been operating unobserved a long time and given that the
process is now making a transition, the probability that the transition is to state j, ;.

must satisfy n simultaneous equations

n

=Xy - (3.1.3)

i=1

We note that these n equations are linearly dependent. This linear dependency can be easily
shown by summing these n equations, which results in 1 = 1. Therefore no unique solution
for m; can be obtained from just by solving the equations (3.1.3). Since we know that the

probabilities that the transition to all states have to sum to one, i.e..

rm=1. (3.1.4)

i=1

Then we can use Equation 3.1.3 in conjunction with Equation 3.1.4 to provide an unique
solution for the steady state transition probability. After we substitute Equation 3.1.4 into

the left hand side of Equation 3.1.3, we have

28
i=
i)

The unique solution for 7; can be obtained by solving n linear equations of (3.1.5). The

matrix form of the solution is

=0 lU ~1+ p]“ — (3.1.6)
where 7, O, U and I are:
1) w=(m,.m,..m,)
(2) O is an unit row vector, i.e., all elements are one,

3) U is an unit matrix, and
(4) Iisan identity matrix.

After deriving the steady state probability (also called limiting state probability), the pro-
bability of a state being occupied by the process and the probability of the process entering

a specified state can be obtained accordingly.

The steady state occupancy probability of state j. denoted as ®;. is the probability

that the process occupies state j when the system reaches a stable stage, and is evaluated as

[25]:

0 =0, = : (3.1.7)

n
where 7 = } m;7T,.

i=1
We are sometimes interested not only in the probability that the process will occupy a

state at some time in the future but also in the probability that the process will enter a

29

state at some particular future time. Thus, the probability that the process is just entering
state j at some time instant after the system is in the steady state, e;, is just the state occu-

pancy probability ®, divided by its mean waiting time 7, [25]:

(pi
¢; =e; = — (3.1.8)
T
After substituting the result of Equation 3.1.7 into Equation 3.1.8 we have
7
e = —. (3.1.9)
T

In a semi-Markov process — as in every life — an important question is "How long
does it take to get from here to there?". Assume that the time it takes to reach state j for
the first time if the system is in state i at time zero is ©, ;, then f, ;(¢), the probability that

©,, =t, is defined as [25]:

fi;e)=Pro(®;, =¢)

t
n

= ¥ p;, [, (@), ;¢=a) o +p, ;b ;).
r=1 0
raj

(3.110)

The process can make transitions to other states before it first reaches state j at time ¢, or it
may stay in state { and then make a direct transition to state j at time ¢. The first term of
the right hand side of Equation 3.1.10 computes the probability of being in state ¢ for any
a€[0, t) and the probability of the process being in another state r at the beginning time of
t—a after the process is out of state i. The second term computes the probability if the
process makes a transition directly from state i to state j at time ¢. Therefore, the time to
move from state i to state j can be estimated as the mean first passage time for a process

from state i to j, and it is evaluated as

30

8, = [tf,,(e)dr . (3.1.11)
[+]

Since the f; ; (¢) is a recursive function which is shown in Equation 3.1.10, the computation
time increases exponentially as ¢ increases. However, in statistical the mean of a random
variable can be estimated as the first moment of its moment generating function, e.g., the
first derivative of its exponential transformation at point zero. The exponential transfor-

mation of a function g(z), denoted as g*(s) is defined as

g's)= [fg(e)e™ar . (3.1.12)
0

So. the exponential transformation of f; ;(¢). is

fi,6)= [fi @™ ar
0

= Y pi, [[hi, (@), ;G—0)e T daat +p,; [h; ;(e)e™ at
r=1 0 Q Q
ratj
= 3o, [[h, @), (¢—0de T dadt —p,; [[h,;(0)f, ,(t—c)e " dadt
r=1 00 .00
+pithU(t)e-“dt
0
= I i, i (5)f7) + py i) ()1 = £ 7,05 (3.1.13)
r=1

Therefore, the mean first passage time for a process from statei to j is

l

d
0, = _d:fi.,}(") =0

d e
Lo + Pi; —hi,j(-") L=o

) ,
S (L) + ()2 pe ()
ds ds ds

n
= Zpi,r
r=1

—Piy

d d
—h;,(s)f;,(s) + hfj(s)—f,-‘,;(-f)] =0
ds ds

d
Since d—hf 7(5) L =9 is the first moment of holding time distribution, i.e., the mean holding
s

time 7, ;. and

Fiilao= [fi;(0)ae =1,
0

the mean first passage time ©, J can be derived as below.

n

61‘4‘ = ZP;,(‘T',-, + é-r.]) —Pij 6}.} (3.1.14)

r=1
By Equation 3.1.2, Equation 3.1.14 can be written as :
n
8, =T+ ZLri,®.;—r,;9;,. (3.1.15)
r=1

However, the mean recurrence time -9'} J Is actually the reciprocal of the steady state

entrance rate into state j, i.e.

8, =—. (3.1.16)

Thus Equation 3.1.15 can be written as

n
Piy -
?i -—+ Zpi,rer,} ’
€

r=}

5, =

and its matrix form is

6=K+PO,

where © = [53.,]andK=(TU)—E—1whereT.UandEare:

(1) T isa diagonal matrix in which T;; =7, and T;; = 0 otherwise,
) U is a unit matrix, i.e., all elements are one, and

(3) Eisadiagonal matrix in which E;; =¢;.and E;, = 0 if i /.

Therefore, the mean first passage time matrix © can be derived as:

3.2. Model Behavior

32

3117

(3.1.18)

(3.1.19)

In this section we use the measures that were defined previously to predict the key

system characteristics for given stochastic transition probability matrix and holding time

density function matrix which were estimated from the collected data. By solving the

semi-Markov model we discover that the system makes a transition every 9 minutes and 8

seconds, on average. In comparing this with the mean time between error (MTBE) listed in

Table 3.1, it is clear that most often the transitions are from one workload state to another.

Also note that the model indicates an MTBE of 4152 hours for CPU errors. This number is

estimated by solving the model equations although there were no observations in the meas-

ured period. (In examining the error data over a one year period we found two CPU

33

Table 3.1. Mean time between errors

Type of || Frequency Mean time between
error count % errors (hour)

CPU 0 0 4152

CHAN 13 1.88 26.88

SWE 201 3.05 1.75

DASD 401 57.95 0.87

MULT 77 11.12 4.62

errors.) The table also shows that a disk error occurs (as indicated in the model) almost
every 52 minutes while a software error is detected every 1 hour and 45 minutes. Most of
the disk errors (95%) are recovered through hardware recovery (i.e., hardware instruction
retry or ECC correction), thus resulting in negligible overhead. This shows that on-line
recovery is highly effective and provides a system with the ability to tolerate a fault and

recover almost instantaneously. Thus, a highly reliable system is achieved.

Table 3.2 lists the mean recurrence time for recovery routines. It shows that the on-
line hardware recovery routine is invoked once every 0.62 hours, while a software recovery
occurs every 2.57 hours. As mentioned earlier, hardw'are recovery involves hardware
instruction retry or ECC correction. The maximum number of retries is predetermined. In
the measured system each CPU has a 26-nanosecond machine cycle time and the disk seek
time is about 25 milliseconds. We estimate a worst case hardware recovery cost of 0.5
seconds, i.e., incorporating twenty 1I/O retries: ten through the original I/0 path and another
ten through an alternative I/O path if the alternative is available. This. of course, overesti-

mates the cost of hardware retry used for the CPU errors. However, the impact is very

Table 3.2. Mean recurrence time

Type of Mean recurrence
recovery time (hour)
Hardware 0.62
Software 2.57
Alternative -
Off-line 651.37

insignificant. This can be seen by comparing the estimated time for each hardware recovery
with the recovery overhead. The comparison shows that the cost of hardware recovery is
worth only 0.02% of total computation time. The mean recurrence time of the alternative

recovery routine, is not estimated due to lack of data, i.e., this event seldom occurred.

The model characteristics are summarized in Table 3.3. A dashed line in this table
indicates a negligible value (less than 0.00001 probability). Table 3.3(a) shows the normal
system behavior. Given that a transition has occurred the system CPU load is most likely to
reach to W, or Wy, i.e, 0.72 or above. This is also reflected in the entry and occupancy pro-
babilities (¢ and ®). From the occupancy probabilities we see that almost 34% of the time

the CPU load is as high as 0.96 (W,): 39% of the time the CPU is moderately loaded (W, +
Wo).

Table 3.3(b) shows the erroneous system behavior. The table indicates that about 30%
of the transitions are to an error state (obtained by summing all the 7's for all the error
states). The DASD errors have the highest transition and entry probabilities. Since a transi-
tion occurs every 9 minutes, we estimate that an error is detected, on the average, every 30

minutes. Of course, over 98% of these errors caused negligible overhead.

)

35
Table 3.3. Summary of model characteristics
(a). CPU bound workload states
Workload state
Measure Wo Wl Wz W3 W4 Ws W6 : W7 Wa
P 0 0.0625 0.0008 0.0136 0.1258 0.0054 0.1639 0.2255 0.3398
™ 0.0257 0.0264 0.0014 | 0.0104 0,0559 0.0047 0.0635 0.1125 0.1127
e 0.00005 | 0.00005 - 0.00002 | 0.0001 0.00001 | 0.00012 | 0.00021 | 0.00021
<] 5.78 5.62 102.56 14.32 2.65 31.38 2.33 1.32 1.32
(b). Error and recovery states
Error state Recovery state
Measure CPU CHAN SWE DASD MULT HWR SWR ALT OFFL
—— -
o 0 0.00005 | 0.0066 | 0.0383 | 0.0179 || 0.00022 | 0.00011 - -
T 0.00004 | 0.0055 | 0.0850 |0.1692 | 0.0322 1{]0.2379 | 0.0572 0.00004 0.00023
e - 0.00001 | 0.00016 | 0.00032 | 0.00006 || 0.00045 | 0.00011 - -
o 4152 26.88 1.75 0.87 4.62 0.62 2.57 4089.5 651.57

An interesting characteristic of the multiple error events is also seen in Table 3.3(b).

Although, the transition probability (7) of a MULT error is lower than that for SWE

(0.0322 vs. 0.0850), its occupancy probability (®) is higher (0.0179 vs. 0.0066). This is due

to the fact that a MULT error has a longer sojourn time as compared to SWE error events

(293 seconds vs. 41 seconds from Table 2.4).

3.3. Effect of Workload

In this section we compute the steady state probability of being in a specified work-

load state and making a transition to a specified error state.

Table 3.4 shows the

36

probabilities of a error occurring at various load levels. In this table, "time" refers to the

mean holding time in the specified workload state (e.g.. CPU = 0.96) before the process

making a transition to the selected state (e.g.. CHAN). An important relation between error

probability and holding time in a workload state is seen in this table. The error probabili-

ties appear to be not only a function of resource usage [10], but also related to the length of

the holding time in a resource usage state. For example, in Table 3.4(a) the probability of a

Table 3.4. Holding time and transition probabilities to error states

(a). CPU workload

Error state
CPU CHAN SWE DASD MULT Total
Load Time Prob Time Prob Time Prob Time Prob Prob
0.96 668.18 | 0.0011 || 1609.71 | 0.0786 || 1218.62 | 0.1296 || 1641.20 | 0.0285 || 0.2377
0.72 596.28 | 0.0032 |} 1118.12 | 0.0492 971.62 | 0.0990 757.09 | 0.0146 || 0.1661
0.54 1304.96 | 0.0010 }| 1507.92 | 0.0471 || 1070.10 | 0.0489 722.26 | 0.0052 || 0.1027
Time - in seconds.
(b). YO workload
Error state
DASD CHAN SWE DASD MULT Total
Load Time Prob Time Prob Time Prob Time Prob Prob
——— - ——— =

96.20 0 4] 256.23 | 0.0022 434.54 | 0.0162 578.97 | 0.0046 || 0.023
67.34 898.35 | 0.0049 || 1243.35 | 0.0987 | 1170.84 | 0.1840 928.12 | 0.0262 |} 0.3138
41.59 (| 4522.67 | 0.0214 || 1516.92 | 0.0875 || 1148.18 | 0.1198 || 1286.67 | 0.0234 || 0.2521

Time - in seconds.

37

channel error is almost the same for two different CPU loads, 0.96 and 0.54. The mean
holding time before a channel error occurs at the lower load is larger than that for the
higher load, i.e. 1304.96 seconds versus 668.18 seconds. When the holding times are simi-
lar, however, (or increasing with increased usage). the error probabilities do increase with
increasing resource usage. A similar phenomenon also exists for the I/O workload (see
Table 3.4(b)). Thus. not only does a higher workload result in a higher error probability
(for similar holding times), but the error probability also increases with increased holding
time in a particular state. In other words, the error probability appears to be a function of
the absolute amount of resource consumed in a given state, be it through increased work-
load and/or increased holding times. An explanation for this apparent "wear out"
phenomenon is not clear (since a large majority of our errors are transient), but it certainly
calls i.nto further question the validity of the frequently used constant error probability

assumption often made in reliability modeling.

3.4. Model Validation

In Chapter 2 we had shown that the resource-usage/error/recovery process of the
measured system is best modeled as a semi-Markov process. This is due to the fact that the
waiting and holding time distributions of some states are not exponentials. In order to vali--
date this semi-Markov assumption we will compare the occupancy probabilities of states

predicted from the model with the values estimated from the collected data.

From Equation 3.1.7 we know that the state occupancy probability of the model, ®;.

is defined as :

38

;7

0, =—
rm7

im]l

However the actual occupancy probability, denoted as &ﬁ. can be estimated from the col-

lected data by using the following equation.

% = total time that system observed to be in state (3.4.1)
' length of the observation period . o

Table 3.5 lists the comparison of these two measures, ¢ and ®, for the normal states with
significant occupancy probability (greater than 0.1 probability) and for one key error state

(DASD). From Table 3.5 we see that the predicted probabilities closely match those

€
estimated from the collected data (with the maximum of 0.025 tolerance, i.e., —). This
®

Table 3.5. Comparison of occupancy probabilities for different states

State || W, W, W, Ws | DASD
® | 0.1258 | 0.1639 | 0.2255 | 0.3398 | 0.0383
& | 0.1259 | 0.1634 | 0.2311 | 0.3452 | 0.0386
e | 0.0001 | 0.0005 | 0.0056 | 0.0054 | 0.0003
€
— || 0.0008 | 0.0031 | 0.0242 | 0.0156 | 0.0078
o

predicted occupancy probability
actual occupancy probability
€: the absolute error, |[® — ¢

P:
o

39

indicates that the semi-Markov model is a good model for the resource-

usage/error/recovery process of the measured system.

3.5. Markov Versus Semi-Markov

In this section we investigate the significance of using a semi-Markov model to
describe the overall resource-usage/error/recovery process. It has been argued that since
errors only occur infrequently (i.e., A is small), a Markov model may well approximate the
real behavior. Thus, although the collected data shows that the semi-Markov process is a
better model for the resource-usage/error/recovery process, i.e., more closely approximates
the data from the measured system, it is reasonable to ask what deviations may occur if a
Markov process is assumed. In order to answer this question we use a Markov model to
describe the resource-usage/error/recovery process of the measured system and compare the

results with those obtained through the more realistic semi-Markov model.

Two measures, the unconditional transition probability to the next state (y) and the

first passage time (©), are used as the basis for comparison.

3.5.1. Unconditional transition probability (y)

Given a stochastic transition probability matrix [p,- J] and a holding time density

function matrix [hi J(t)], the unconditional transition probability from state i to statej, — - -

denoted as v; ;. in the semi-Markov process is given by [25]:

TPiiTiy
v = — (3.5.1)
?

40

where 7, ; is the mean holding time before a transition occurs from state i to state j and 7
is the mean holding time of the process. Because the selection of the next state in the Mar-
kov process is not dependent on the holding time in the current state, i.e. 7;; = 7,, for

every j and k, so from Equation 3.1.2 we can have

n n
T= 1Py iy =T, Lpi; =Ty - (3.5.2)
j=l i=l

Substitute this into Equation 3.5.1 we have

miPi ;T
¥, = ——— (3.5.3)
.
Further, from Equation 3.1.7 we have
Yij = Pipij- (3.5.4)

Table 3.6 compares the unconditional transition probability for semi-Markov and
Markov models. We see from Table 3.6(a) that when the CPU load is as high as 0.96, the
transition probabilities to the software and multiple errors are close for both models. This
is also true for channel error when the CPU load is 0.54. This is because for some destina-
tions j the holding time to the next state is the same as the waiting time of the current
state, i.e., 7; =7, ;. For the majority of the cases, however, the Markov and semi-Markov
models are not in agreement. Table 3.7 shows the ratios of the unconditional transition
probability y;; estimated from both models, Markov versus semi-Markov. If the ratio is
less then 1 then the Markov process underestimates the transition probability, otherwise, it
overestimates. From this table we see that the Markov assumption sometimes overesti-

mates and sometimes underestimates the transition probability. In particular it overesti-

Table 3.6. Comparison of transition probabilities. y; ;
(Markov versus Semi-Markov)

(a). From CPU workload to error states

Error
Load Model CHAN | SWE | DASD | MULT
semi-Markov || 0.0011 | 0.0786 | 0.1296 | 0.0285
0.96 Markov 0.0025 | 0.0783 | 0.1705 | 0.0278
semi-Markov {| 0.0032 | 0.0492 | 0.0990 | 0.0146
0.72 Markov 0.0058 | 0.0469 | 0.1086 | 0.0206
semi-Markov || 0.0010 | 0.0471 | 0.0489 | 0.0052
0.54 Markov 0.0011 | 0.0429 | 0.0627 | 0.0099

(b). From /O workload to erro states

Error
Load Model CHAN | SWE DASD | MULT
semi~Markov || 0 0.0022 | 0.0162 | 0.0046
96.20 Markov 0 0.0082 ; 0.0350 | 0.0075
Tmi—Markov 0.1 8:10 0.0987 | 0.0263 | 0.0049
67.34 Markov 0.0068 | 0.0987 | 0.1955 | 0.0352

semi-Markov |{ 0.0214 | 0.1198 | 0.0875 0.0237.1

41.59 Markov 0.0069 | 0.0839 | 0.1516 | 0.0264

41

Table 3.7. Ratio of ¥;, (Markov/semi-Markov)

Workloaﬂ Error

Resource | Load || CHAN | SWE | DASD | MULT

0.96 || 2.273 | 0.996 | 1.316 0.976

CPU 0.72 || 1.818 | 0.953 | 1.097 1.411

0.54 || 1.100 | 0.911 | 1.282 1.904

96.20 - 3.727 | 2.161 1.631

DASD 67.34 || 0.037 1.0 7.446 7.184

41.59 || 0.322 | 0.700 | 1.733 1.128

42

mates the transition probabilities to most error states, regardless of the state. Overestima-

tion will lead to an unduly conservative reliability estimate and underestimation to an

overly optimistic estimate. Thus both are undesirable.

3.5.2. First Passage Time (8)

We now examine the difference between the first passage times under the Markov and

the semi Markov assumptions. The first passage time distribution can be used to estimate

the MTBE and its variance.

The mean first passage time from state i to state j. 9, j in a semi-Markov process is

given in Section 3.1 as:

@l

ij

.

43

From this equation, we notice that the mean first passage time depends on only the mean

bolding time and the conditional transition probability of the current state. Clearly, if the

first moment of the first passage time to the error state (e.g., the MTBE) is the only main
concern, the Markov process should be able to provide adequate information. If the distri-

bution (or the higher moments) of the first passage time is of interest, the Markov model

may be inadequate, particularly if the variance of the first passage time is large. Thiscan - - -

be seen clearly from the following equation [25].

1 n n n
]l i= r=1 i=1
— raj
e, = n) (3.5.6)
T; + ZP;,QT,,G,.J + 62,4-) otherwise
r=1
rj

This equation indicates that the second moment of the first passage time is a function of the
second moment of the state waiting time, as well as the mean holding time to the next state.
Since the mean (X) and the standard deviation (o) of an exponential distribution are the
same, and the second moment of an exponential distribution is only a function of its mean,

ie. E[X?] = 2*E[X]°. Thus. a Markov assumption may under- or over-estimate the second

moment. E[X?], if o=E[X].

Table 3.8 shows the ratio of 62,- ; Markov/semi-Markov) for transitions from a few
selected workload states to the error states. From Table 3.8, we see that the Markov
assumption frequently underestimates the second moment of the first passage time (to the
error state). The underestimation can be as much as 30%. However, it overestimates the

variation of first passage time among different resource usage states, although this is not

Table 3.8. Ratio of ©° (Markov/semi-Markov)

‘Workload Error
Resource | Load || CHAN | SWE | DASD | MULT
0.96 |} 0.989 | 0.8376 | 0.694 0.939
CPU 0.72 || 0.996 | 0.998 | 0.909 0.972

0.54 || 0.992 | 0.937 | 0.830 | 0.953

96.20 || 1.006 | 1.010 | 0.901 0.991
DASD 67.34 || 1.002 | 0.963 | 0.888 0.972
41.59 || 1.001 | 0.948 | 0.871 0.963

shown in the table.

3.5.3. Summary

In summary, our measurements show that using a Markov model frequently overesti-
mates the unconditional transition probabilities and underestimates the variance of the first
passage times to the error states. The overestimation, of course, will lead to an unduly con-
servative reliability prediction. It can be argued that such gross overestimation (as seen in
some cases here) is undesirable and may not be cost beneficial. The underestimation is no

doubt a serious problem which may lead to unduly optimistic reliability prediction.

45

CHAPTER 4

SOFTWARE RELIABILITY MODEL

4.1. Introduction

The problem of modeling software reliability during the development, debugging and
validation phases of the software cycle is a well researched area. However, there are few
studies which model software error and recovery processes in a fully operational produc-
tion environment. The difficulties are partly due to the fact that, unlike computer
hardware, which is reasonably modularized, each software system can have its own pecu-
liar characteristics. At this stage, it is extremely valuable to develop a comprehensive model
quantifying the software error and recovery processes in a production system using real
data. In addition to providing useful information on how and when errors occur in the real
world, this process provides the quantification of the interaction among different types of

software errors; an important result for developing analytical models.

In this chapter, a state-transition model to describe the software error and recovery"

processes in a complex operating system is described. Measurements were made on an MVS
(Multiple Virtual Storage) system running on an IBM 3081 mainframe. Time-stamped low
level error and recovery data from MVS, collected during the normal operation of the sys-
tem. formed the basis for developing the model. The semi-Markov model developed from

the real data provides a quantification of the system error characteristics and also gives an

46

insight into the interaction between the various software error and recovery processes

occurring during normal system operation.

4.1.1. Related Research

Most software reliability models usually refer to the development, debugging and
testing phases of the software [11.12,13,14]. Few of these models have been applied to the
operational phase of the software. In [2] and [15]. software failures in an operating
environment are studied. Both studies found that at least 60% of system failures were
software related. There has been little explicit study of hardware/software reliability. In
[15]. software failures related to hardware problems in the operating system are analyzed
and it is shown that errors in the hardware/software interface are often fatal. In [27], a
resource-usage/reliability model was developed from real data and it was seen that about

36% of detected errors (not necessarily system failures) were related to software problems.

With the exception of software reliability growth models, which have been validated
with real data, there are few, if any, models of software reliability in an operational
environment. Exceptions are the hardware and software model discussed in {18] and a
measurement-based model of workload dependent failures discussed in [10]. However,
these only describe the external behavior of the system and do not provide insight into

component-level behavior.

It is therefore highly instructive to develop a detailed model based on low-level error
data from a production system. In the following sections. we construct a error/recovery
model for the MVS operating system. Software problems of differing severity are modeled.
Multiple errors are also considered and and the effect of on-line recovery routines is taken

into account.

47

4.2. Error Characterization

In this section the collection and characterization of the software error and error
recovery data are discussed. A state-transition diagram is developed to describe the
different error and recovery states. This allows us to determine the serverity of errors and

effectiveness of recovery.

Error data based on different causes were collected. Information on software errors is
automatically logged by an operating system module. Details of the logging mechanism are
described in [23]. In order to ensure that the analysis is not biased by error records relating
to the same problem, two levels of data reduction which were described in Chapter 3 were
performed. As a result, the software errors were classified into eight classes. These eight

classes are called error events, since they may contain more than one error, and are defined

as follows.

(1) Control (CTRL) - incidents indicating the invalid use of control state-
ments and invalid supervisor calls

(2) Deadlocks (DLCK) - incidents indicating system or operator detected

endless loop. endless wait state or violation of system
or user-defined time limits

(3) I/0 and Data Management (I/0) - incidents indicating problems occurred during I/0
management or during the creation and processing of

data sets

(4) Storage Management (SM) - incidents indicating errors in the storage
allocation/de-allocation process or in virtual memory
mapping

(5) Storage Exceptions (SE) - incidents indicating addressing of nonexistent or

inaccessible memory locations

(6) Programming Exceptions (PE) - incidents indicating program errors other than
storage exceptions

48

(7) Others (OTHR) - incidents indicating that problems occurred which
do not fit the above categories

(8) Multiple Errors (MULT) - incidents indicating more than one type of error

listed above

Table 4.1 lists the frequencies of different types of software error events defined
above. The table shows that more than one half (52.5%) of software errors were I/0 and
data management errors and another 11.4% of the errors were storage management errors.
A significant percentage (17.4%) of errors were classified as multiple errors and are

specifically modeled in the following sub-section.

4.2.1. Multiple Exrors

A multiple error most often is due to a single fault that has non-identical manifesta-

tions provoked by different types of system activity. Since the manifestations are not

Table 4.1. Frequency of software errors

Type of Errors Frequency | Percent
Control 213 7.72
Deadlock 23 0.834
I/O & Data Management 1448 52.50
Program Exception 65 2.43
Storage Exception 149 5.40
Storage Management 313 11.35
Others 66 2.32
Multiple Error 481 17.44
Total 2758 100.00

49

identical, recovery may be complex. Figure 4.1 shows the state-transition diagram of a
multiple error developed from the data. The transition probability from state i to state j,

P; ;. is estimated from the measured data using:

observed number of transitions from state i to state j

p. -
t observed number of transitions from state i

This figure not only illustrates the possible interactions among different software errors but
also provides detailed information on the occurrence of transitions. For example, if a pro-
gram exception error (PE) occurs, there is about a 63% chance that a storage exception (SE)
on error will follow. Further, there is more than a 50% chance that one storage error will
be followed by another error of the same type (52% for storage management and also for
storage exception). If we only focus on those transitions with significant probabilities (i.e..
higher than 0.1), the number of states in Figure 4.1 can be reduced to five. The state-
transition diagram for these active states is illustrated in Figure 4.2. Notice that a cyclic
path is formed by the I/0 and data management (I/O) along with the two different types of

exception states (program exception and storage exception).

4.2.2. Recovery Modeling

Recovery in MVS is designed as a means by which the system can prevent a total loss.
Whenever a program is abnormally interrupted due to the detection of an error, the Super~
visor gets control. If the problem is such that further processing could degrade the system
or destroy data, the Supervisor gives control to the Recovery Termination Manager (RTM).
If a recovery routine is available for the problem program. RTM gives control to this-rou-

tine before deciding to terminate the program. R

50
0.0769
0.0104 ~ 0.4616
/ =
0.3258 ’ 0.2536
0.3077
0.1924
0.1124 0.0101
- /0
0.1089
0.0608
0.1685 \ J04 \/ 0.0405 0.2885
0.072
0.0243) 0.1726
0.1871 ’ 010655

0.8406
0.5243
0.0297
0.2541 } 0.0050
0.0162

’ 0.1726

0.1667

P 0.1164
o317 06554 E
0.2161 - '
0.519 a7t 0.1571 0.0898

Figure 4.1. State-transition diagram for a multiple error

51

0.1871 0.2536

0.2541 @’ 0.1726

0.1667

0.1164

0.2161 0.1871

Figure 4.2. Reduced state-transition diagram of multiple errors

The purpose of a recovery routine is to free the resources kept by the failing program
(if any). to locate the error, and to request either a continuation of the termination process

or a retry. Recovery routines are generally provided to cover critical MVS functions. It is

52

however, the responsibility of the installation (or of the user) to write a recovery routine

for other programs.

More than one recovery routine can be specified for the same program: if the latest
recovery routine asks for a termination of the program, the RTM can give control to
another recovery (if provided). This process is called "percolation.” The percolation process
ends if either a routine issues a valid retry request or no more routines are available. In the
latter case, the program and its related subtasks are terminated. If a valid retry is
requested, a retry routine restores a valid status using the information supplied by the
recovery routine(s) and gives control to the program. In order for a retry to be valid. the
system should verify that there is no risk of error-recurrence and that the retry address is

properly specified. An error may have four possible effects.

1) Retry - The system successfully recovered and returned control to the
problem program. ‘

2) Task Termination - The program and its related subtasks are terminated, but the sys-
tem is not affected.

3) Job Termination - The job in control at the time of the error is aborted.

4) System Damage - The job or task in control at the time of the error was critical for
system continuation. Thus, job/task termination resulted in system
failure.

Figure 4.3 illustrates the steps in the recovery process. It is clear that recovery can be as
simple as a retry or more complex, requiring several percolations before a retry. The prob-
lem can also be such that no retry or percolation is possible. Table 4.2 shows the percentage
for these different types of situations. For example, for storage management errors, approx-

imately 8% of the cases resulted in a direct retry, 84% involved some percolation and over

53
Retry successful Resume
op
faided
retry
faNed
error Pe-xx
detected colation

prevent({further
percojation

No Per-
colation

Figure 4.3. Flow of recovery

Table 4.2. Percentages of recovery attempts for a software error

Type of error Retry | Percolation | No-Percolation
(%) (%) (%)
Control 78.38 21.62 0.0
Deadlock 2.78 97.22 0.0
I/0 & Data Management || 93.49 6.51 0.0
Program Exception 20.09 79.91 0.0
Storage Exception 28.09 71.91 0.0
Storage Management 1.77 83.73 8.50
Others 14.89 85.11 0.0

54

8% could not be percolated any further (i.e. jobs/task termination). The table shows that

only in a small percentage of the cases was the problem un-recoverable (no-percolation).

4.3. Software Reliability Model

4.3.1. Overall Error/Recovery Model

In this section we combine the separate error and recovery models to construct a single

overall model shown in Figure 4.4. Note that a state, Normal, represents the normal sys-

tem operation. The results of the recovery process are classified into three different states

(resume op. task term and job term) to reflect the severity of errors. The model thus pro-

vides a complete overview of software error and recovery from an error occurrence to its

recovery.

-’ -

'

55
Resume
op
.0
To
Normal Job 1.0 Normal
term

_/ state

Task

colation term

Figure 4.4. Software error/recovery model

-

S6

4.3.2. Waiting Time Distributions

Table 4.3 shows the characteristics of both normal and error states in terms of their
waiting times. Note that the duration of a single error is generally in the range of 20-40
seconds on the average, except for deadlock and "others'. The table also shows that the
errors not classified are relatively insignificant since their duration is less than 2 seconds.
Program exceptions take twice as long as control errors (42 seconds versus 21 seconds).
This is possibly due to the extensive software involvement in recovering from program
exceptions. Figure 4.5 shows the density of waiting time in the normal operation state, i.e.,
the density of the time to error. This density could not be fitted to a simple exponential,

and because of the shape of this density we found that it was fitted to a multi-stage gamma

Table 4.3. Mean waiting time (in seconds) of states

of Mean Standard | Std Error
State obs | waiting time | deviation { of mean
Normal 2757 10461.33 32735.04 623.44
Control 213 21.92 84.21 5.717
Deadlock 23 4.72 22.61 4.72
I/0 & Data Management || 1448 25.05 - 77.62 2.04
Program Exception 65 42.23 92.98 11.53
Storage Exception 149 36.82 79.59 6.52
Storage Management 313 33.40 95.01 5.37
Others 66 1.86 12.98 1.60
Multiple Error 481 175.59 252.79 11.53

57

Probability |

Duration (minutes)

Figure 4.5. Time to error density

density function better than to a phase-type exponentials at the same acceptable level. The

multi-stage gamma density function f (¢) is defined as

f@)=3 a,g(t:a.s,). (4.3.1)

i=1

n

where a; 20, J a;=1, and n is the number of stages. The g(¢:a,s) is a gamma density

i=1

function (with s the distance shifting from the origin),

0 t <s
1
I'(e)

glesas)= (432)
C=s)y e 25,

where I'(a) is a gamma function. Hence, the density in Figure 5 so obtained has five stages,

given by

58

f(x)= 0.748 g(x; 2.1, ~1) + 0.055 g(x; 0.5. 0) + 0.069 g(x; 3.5, 3)

+ 0.030 g(x: 5.0, 8) + 0.098 g(x: 5.0, 17),

tested using the Kolmogorov-Smirnov test [26] at the 0.01 significance level.

4.3.3. Recovery Time Distribution

For the purposes of evaluating the time for recovery, we assumed that each recovery
mode takes a constant amount of time. The overall recovery time, i.e., the duration of an
error event (or the waiting time in an error state), however was not constant, since an error
event can involve more than one recovery attempt or may require more than one recovery
routine. The recovery time was then computed as the time difference between the first and
the last detected error caused by the same event. The duration of an error event was used

to measure the effectiveness of recovéry from this event and also the severity of the error.

Figure 4.6 shows the recovery time densities for three different types of errors: I/O
and data management, storage management, and multiple errors. Note that none of these
densities could be fitted by simple exponentials at an acceptable level of significance. Thus,

they were fitted to phase-type exponential density functions [26].

f@&)=Z a;g,(2).

i=1

n

where a; 20. Y a;=1 and n is the number of phases. The g; function can be a simple

i=l
exponential, a multi-stage hyperexponential, or a muti-stage hypoexponential density func-
tion. These exponentials are defined in Section 2.4. The densities in Figure 4.6 were fitted
to the following functions (tested using the Kolmogorov-Smirnov test at the 0.01

significance level):

59

1.0

Prob. 0.5 P oo oo e e

0.0L.

i 3]] -

2 4 6 8 10

Duration (minutes)

(a). Density for /O and Data Management state

Prob. bl 25\t

Duration (minutes)

(b). Density for Storage Management State

Prob.

Duration (minutes)

(c). Density for multiple error state

Figure 4.6. Recovery time (error duration) densities

--q-r---
! ‘

60

(1) vo: £ (£) = 0.07825¢ %% + 0.000354¢ 2%
(2) SM: £ (e) =0.1642¢™% + 0.030424¢ **5P* 1 0,0006634¢ % and

(3) MULT: £ (¢) = 0.078¢ ™% + 0.002426¢ %55 4 0,002163¢ 0205525

4.3.4. Summary

In summary, the model developed explicitly quantifies the error and recovery process
in the measured software. We note both the time to error and the recovery time distribu-
tions in several key states cannot be modeled as simple exponentials. Hence the overall pro-
cess is modeled as a semi-Markov process. Further, the semi-Markov process is irreducible
with the resume operation (resume op) state, the job termination (job term) state, and the

task termination (task term) state being recurrent.

In the next sub-section we analyze the overall model to determine key software error

‘characteristics. The mean time between different types of errors is evaluated along with

model characteristics such as the occupancy probability of key error states.

‘4.4, Model Analysis

4.4.1. General Characteristics

By solving the semi-Markov model, we discover that the measured software system
made a transition. on the average, every 43 minutes and 22 seconds. Table 4.4 lists the
mean time between different software errors (i.e., mean time between errors) and Table 4.5
shows the mean recurrence time for recovery processes. By examining the mean recurrence
time for /O and MULT errors from Table 4.4 and comparing them with the mean waiting

times in Table 4.3, we find that although the I/0 errors occur about 3 times as often as the

Table 4.4. Mean time between errors

Error |l Frequency | Percent | MTBE

state count (%) (hour)
CTRL 213 7.72 3783
DLCK 23 0.84 351.58
170 1448 52.50 5.56
PE 65 2.43 120.15
SE 149 5.40 54.08
SM 313 11.35 25.73
OTHR 66 2.32 125.84
MULT 481 17.44 16.75

Table 4.5. Mean recurrence time of recovery

Type of recovery || MTBR (hour)
Retry 4.25
Percolation 8.55
No-Percolation 241.43

61

multiple errors, the system spends nearly 6 times longer in recovering from a multiple

error (25 seconds for I/0 errors versus 175.6 seconds for multiple errors). This is because

recovery from a multiple error involves several different types of recovery attempts. In

addition, 63% of the multiple errors invoke percolation compared with the fact that 94% of

the I/0 errors recovered through retry (see Figure 4.4).

4.4.2. Model Probabilities

62

Given the irreducible semi-Markov model of Figure 4.4, the following steady state

probabilities were evaluated. The derivations of these measures are given in Section 3.1.

(1) transition probability ()

(2) occupancy probability (®;)

(3) entry probability (e;)

(4) mean recurrence time (0 i)

-'given that the process is now making a transition,
the probability that the transition is to state j

- at any instant time the probability that the process
occupies state j

- at any instant given that the process is entering a
state, the probability that the process enters state j

- mean recurrence time of state j

The model characteristics are summarized in Table 4.6. A dashed line in this table

Table 4.6. Characteristics of software error/recovery model

(a)
Normal Error state
Measure state CTRL DLCK 1/Q PE SE SM OTHR MULT
m 0.2474 || 0.0191 0.0020 | 0.1299 0.0060 0.0134 0.0281 0.0057 | 0.0431
()] 0.9950 || 0.00016 - 0.00125 | 0.000098 | 0.000189 | 0.00036 - 0.002913
(b)
Recovery state Result
Measure || Retry | Percolation | No-Percolation || Resume op { Task term | Job term
m 0.1704 0.0845 0.0030 0.1414 0.0712 0.0348
2] 4.25 8.55 241.43 5.11 10.16 20.74
* - in hour

|

63

indicates a negligible value (less than 0.00001 probability). From the occupancy probabil-
ity.®, of the normal state in Table 4.6(a). we see that in about 99.5% of time the software
system is operating normally, i.e.. only 0.5% of time the system detects software errors.
This indicates that the reliability of the measured software system can be as high as 0.995.
In Section 2.2 we know that about 35% of observed errors were software errors. Thus the

effect on the overall system reliability due to the software errors is very significant.

The table also shows that, of all possible transitions made, 24.73% are to an error state
(obtained by summing all the #'s for all the error states) and another 25.79% are to a
recovery state. Since it was seen earlier that a transition occurs every 43 minutes, we esti-
mate that a software error is detected, on the average, every 3 hours. From Table 4.6(b).
we notice that although an error is detected almost every 3 hours, a successful recovery
(i.e., results in resume operation). only occurs once every five hours, i.e., nearly 43% of the

errors result in task/job termination.

Multiple-error events formed a significant category on their own. Since this type of
event involves several errors and result in considerable overhead, it is analyzed separately

in the next section.

4.4.3. Characteristics of A Multiple Error

In Section 4.2 we pointed out that about 17% of software errors were multiple errors.

- We also noticed that the multiple errors mostly consist of I/0, storage. or progrimg' errors.

" A strong connection between program and storage exception was seen in the occurrence of a

multiple error. Table 4.7 lists the characteristics for a multiple error and was obtained by
solving the semi-Markov model described in Figure 4.1 with a zero holding time in the

normal state (i.e.. given a multiple error occurs). From Table 4.7 we see (from ,

Table 4.7. Characteristics of a multiple error

Normal Error state
Measure state CTRL DLCK 170 PE SE SM OTHR

T 0.1767 0.0327 0.0048 0.1451 0.1473 0.2957 0.1360 0.0617

] 0 0.0648 0.0130 0.3004 0.0837 0.2202 0.2717 0.0462
e 0.00568 | 0.00105 0.00015 0.00466 0.00473 0.00950 0.00437 0.00198
—
) 0.0489 || 0.2647 1.8126 0.0596 0.0587 0.0292 0.0636 0.1401

¢ . in hour

transition probability) that nearly 30% of the transitions are made to the storage exception
state when the process enters a multiple error mode. Once in a multiple error mode. a
storage exception error occurs every 1 minute and 45 seconds (@ = 0.0292 hours in Table
4.7), while the average duration of multiple errors is about 2 minutes and 56 seconds (0 =
0.0489 hours, the recurrence time of the normal state). Note that the average duration of a
multiple error predicted here from the model is very close to the mean duration of a multi-
ple error, 175.5 seconds obtained from real data, listed in Table 4.3. This provides a strong
evidence that the semi-Markov process is 2 good model for our measured system due to its
fairly accurate prediction. As soon as an entry into a multiple error is made, consecutive
errors are detected almost every 31 seconds (by taking the reciprocal of the sum of all
entry probabilities e in Table 4.7). This indicates that about 5 to 6 errors will be detected

on average. once a multiple error occurs. .

There are several interesting characteristics of multiple errors which can be derived
from the model of Figure 4.1. For example, if we want to know the probability of a

storage exception error given an 1/O error, we can evaluate it by the multi-step transition

65

probability to the SE state from the I/O state. This turns out to be very small, only
0.0076. However, we find that the probability of an I/0 occurring given a SE occurs at any
time instant, is as high as 0.668. This is partly due to the fact that for a semi-Markov pro-
cess the unconditional transition probability at any time instant, v, ;. is not ofxly a fux;ction

of conditional transition probability p; ; but also a function of mean holding time. This can

be seen in Equation 2.5.1.

4.5. Conclusion

In this study, we have developed a semi-Markov model to describe the error and
recovery processes in the MVS system. The model is based on real error data collected dur-
ing normal system operation. The semi-Markov model developed provides a quantification
of system error characteristics and the interaction between different types of errors. Asan
example, we provide a detailed model and analysis of multiple errors, which constitute
approximately 17% of all software errors and result in considerable overhead. It is sug-
gested that other systems be similarly analyzed and modeled so that a wide range of realis-

tic models of software reliability in an operating environment are available.

66

CHAPTER S

PERFORMABILITY MODEL

A workload/reliability model is built based on real data. Given a stochastic transition
probability matrix and a holding time density matrix, the system behavior such as the
unconditional transition probability and state occupancy probability in the steady state can
be estimated. However, the performability of the measured system is not yet addressed.
Thus in this chapter we use the resource-usage/error/recovery model to estimate the per-
formability of the system. Reward functions are used to depict the performance degrada-
tion due to errors and also due to different types of recovery procedures. Toward this end,

we define a reward rate for each state of the resource-usage/error/recovery model.

5.1. Reward Function

First, we propose the reward rate r; (per unit time) for each state i in our model as

follow:

3

ifieSy USg
5; te

(5.1.1)

R
]

where, the s5; and e; are the service rate and the error rate in state i, respectively. Thus one

67

unit of reward is given for each unit of time when the process stays in the normal states
Sy- The penalty paid depends on the number of errors generated by an error event. With
an increasing number of errors the penalty per unit time increases, and accordingly. the
reward rate decreases. Zero reward is assigned to recovery states. This is due to the fact
that during the recovery process the system does not contribute any useful work toward
the system performance besides recovering from an error. Based on this proposal, reward
rates for the error states are estimated and shown in Table 5.1. We know that from Tabie
3.3(b) the transition probability to the DASD error is about as much as twice to the SWE
error and Table 5.1 shows that the reward gained from the DASD state is also as much as
twice from the SWE state. Thus we expect that the impact due to the DASD error on the‘
performability is much higher than that due to the SWE error. In order to understand the
effectiveness of various errors, first we show some important performability measures that

can be derived from the model.

Since the system can be in any state at any instant, so the reward rate of the system at
time ¢, X(¢), is the reward rate of the state where the system is currently occupied. Itisa

random variable and denoted as

Table 5.1. Reward rates, r;, for error states

State | DASD | SWE | CHAN | MULT

i 0.5708 | 0.2736 | 0.9946 | 0.2777

68
X(¢) = {r,; | process is in state i at timez }. (5.1.2)

Therefore the expected reward rate at time ¢, E[X(¢)], can be evaluated as
E[X(:)] = ;pi @r; . (5.1.3)

where p;(¢) is the probability of the process being in state i at time ¢. The cumulative

reward by time ¢, Y(¢), can be derived from

¢t

Y®) = [X(o)o. (5.1.4)
0

Therefore, the expected cumulative reward at time ¢, E[Y(z)], is given by [28]:

7~
(¥}
o

a
N/

ElY()] = Fl fx(a-)dg-} =T¥r, eri(cr)dg-)
i 0

In order to solve for p;(¢) and hence other measures, we convert the semi-Markov process

into a Markov chain using the method of stages [26,29]. The conversion of the semi-

Markov model to the Markov model for the measured system is described in section 5.2.

Thus the state probability vector P(¢) = (....p;(¢)....) can be computed by solving the set of

differential equations of the form:

d
— P(¢) = P(¢)Q
dt

where Q is transition rate matrix of the Markov chain [25].

69

5.2. Semi-Markov to Markov Conversion

As we know, the sojourn time distribution of states is the only difference between
semi-Markov and Markov models. For a Markov model the sojourn time distributions of
states must be exponentials. however, it can be any distribution for a semi-Markov model.
Thus, to convert a semi-Markov to a Markov process, one must change the non-exponential
distributions to exponentials. In this section, we show how to convert a state with non-

exponential distribution to a number of states in which each state is exponential.

In Section 2.4 we fitted the state holding times of our resource-usage/error/recovery

process to the phase-type exponentials. The phase-type exponential function f (¢) can be

expressed as

f@)= Yag@).

i=l
n

where a; >0, ¥ a; =1, and n is the number of phases. For each phase i, the g;(¢) can be a

i=1
simple exponential. a multi-stage hyperexponential, or a multi-stage hypoexponential. The

definitions of these three types of functions are listed below.

Exponential : EXP (A)
EXPA) = Ae ™™
Hyperexponential : Hyper (A,.,....\,)

r r At
Hyper(A,\,....A,) = Ta,EXP(\,) = Ta\;e ',

i=1 i=1
r

where ¢; >0, a; 20,and Y q; = 1.

i=1

70

Hypoexponential : Hypo (A;.\,....A,)

r r -\t
Hypo(ApAz...\,) = TaEXP(\) = Tade ',
i=1 i=1
r Aj
where A; >0, \;#A; if i#j, and q; = [[——.
=1 N

inj

By using the method of stages [26]. a hyperexponential distribution can be modeled as a set
of parallel exponential stages and a hypoexponeﬁtial distribution as a set of series exponen-
tial stages. Figure 5.1(a) and 5.1(b) show the conversions of these two types. In Figure
5.1(a) we note that each a; of hyperexponential function is converted to the probability to
the associated state having density EXP(X;), however this is not the case for the hypoex-
ponential. From Figure 5.1(b), we know that the Markov version of the hypoexponential is
just a series connection of states in which each state has an simple exponential density func-
tion and the probability from one state to anotizer is one. As an example we know in sec-

tion 2.3 that the holding time density from state Wy to error state DASD is fitted by

£ (¢) = 0.235 EXP(0.004) + 0.765 Hypo(0.00093, 0.006595) ,

which is a combination of hyper and hypo exponentials. The Markov conversion of the
state with Equation 5.2.1 holding time density is shown in Figure 5.2. Note that the state
W in Figure 5.2(a) is modeled as a three state Markov process. This is shown in the dotted

area of Figure 5.2(b).

5.3. Performability Analysis

After converting a semi-Markov process to a Markov process. analysis can be carried

out on the resulting Markov reward model of the measured system using SHARPE (the

(a). Hyperexponential distribution as a set of parallel exponential stages

(b). Hypoexponential distribution as a set of series exponential stages

Figure 5.1. The conversion of non-exponential to a set of exponentials

71

2

0.5455

(a). Semi-Markov

0.5455
— DASD

EXP(0.00093) EXP(0.006595)

(v). Markov

Figure 5.2. The Markov conversion of State W,

Symbolic Hierarchical Automated Reliability and Performance Evaluator) [29]. SHARPE is
a modeling tool developed at Duke University. It provides several model types ranging
from reliability block diagrams to complex semi Markov models, and allows the user to
construct and analyze performance, reliability and availability models. However, this tool

can only be used to analyze a model with size less then 200 states, thus we assume our

73

resource-usage/error/recovery model is a independent semi-Markov process. The conver-

sion of the waiting times of states are shown in Appendix C.

In order to study the impact of different types of errors, the irreducible semi-Markov

process is converted to one with absorbing states in the following manner:

a) with OFFL as the absorbing state (OFFL),

b) with MULT and OFFL as the absorbing states (MULT),

¢) with SWE, MULT and OFFL as the absorbing states (SWE),

d) with DASD, MULT and OFFL as the absorbing states (DASD), and

e) with DASD, SWE, MULT and OFFL as the absorbing states (ALL).

In case (a) we assess system performability in which all but off-line failures are not
recovered from. This actually provides us with the result of the system reliability. In case
(b) we discontinue recovering from multiple errors. Here, we expect to measure the impact
on the reward to a multiple error. Since multiple errors happen much more frequently
than OFFL and the sojourn time is much longer comparing with others, we expect to meas-
ure the impact of SWE and DASD on the reward to a MULT error. Thus, in case (c) we not
only stop recovering from multiple and off-line failures but we also stop the recovery from
software errors. In case (d) we recover from SWE errors but stop recovery from DASD

errors. Finally, in case (e) we do not recover from any errors besides CHAN.

We compare these scenarios first using the expected instantaneous reward rate E[X(¢)]

which is defined by Equation 5.1.3, then using the time-averaged expected accumulated

E[Y()]
d —————
¢

rewar . In all but case (a) and (e) we consider two variations: when a state such

as DASD (MULT or SWE) is made absorbing, we can either let the reward rate in such a

state be non-zero or we can set its reward rate to zero. The impact of the non-zero assign-

74

ment is that upon reaching the absorbing state, the system continues to operate in a
degraded mode. In the latter case, i.e., zero reward assignment, we conservatively assume

that the system stops functioning when it reaches the absorbing state(s).

In Figure 5.3(a). we plot E[X(¢)] for cases (a) and (b). In the case (b) we use two
different assumptions for the reward rate for the MULT state, rrpq,;-=0.27777 and
rraurr=0- We also plot E[X(¢)] for case (a) with the assumption that all states have
exponentially distributed holding times. We note that such a Markovian assumption leads
to an overestimation of the system's capability to perform useful work, and the degree of
overestimation increases as the system operating time increases. We also note that not
recovering from multiple errors considerably degrades the system’s performability. More-
over, changing from non-zero to zero reward rate further reduces the system’s effectiveness

drastically.

(2]

+*
[

In Figure 5.3(b). we plot the

for cases ¢, d and e. In each case, except case e,

we also have two versions with reward rates for absorbing states being non-zero and zero,
respectively. Note that not recovering from SWE errors degrades system effectiveness con-
siderably compared with the effect of not recovering from DASD errors, provided we
assume that absorbing states continues to provide service in a degraded mode. On the other
hand, if we assume that absorbing states are system failure states, i.e., zero reward rates for
absorbing states, then not recovering from DASD failures is more severe than not recover-
ing from SWE failures. This behavior is explained by the fact that the reward rate in the
DASD state is about twice that in the SWE state (0.5708 versus 0.2736 in Table 5.1). Fig-

ures 5.4(a) and 5.4(b) are the counterparts of Figures 5.3(a) and 5.3(b) where the measure

E[Y(2)]
t

plotted is rather than E[X(¢)). The trends are similar.

1.0

E[X(1)]
0.5

0.0

1.0

E[X(1)]
0.5

0.0

(r.r. : reward rate)

Figure 5.3. The expected reward rate. E[X(¢)]

75

1.0

E[Y(DI/t
0.5
0'0L...l....l‘...l..LLl.L..nLA..l....l
0 5 10 15 20 25 30 35
* 24 hours
(a)
B g S G S
A DASD (5.r. > 0)
SWE (z,r. > 0)
E[Y(Dlt
LT R i Y A
o.o....l..L.l....lll,.l....l.L..l..l.l
0 5 10 15 20 25 30 35
Minutes
(v)

(r.r. : reward rate)

Figure 5.4. The time-averaged accumulated reward, E[Y(¢)]/z

76

[

77

Finally, in Figure 5.5, we show the distribution function of Y(eo), the accumulated
reward until system failure, for two cases: Markov versus semi-Markov. Both assume that

the OFFL state is the only absorbing state. Once again we note that the Markovian assump-~

_ tion implies an overestimation of the system’s performability.

Prob.

Reward (unit: 252%10000)

Figure 5.5. Distribution of accumulated reward until system failure

78

CHAPTER 6

SUMMARY AND CONCLUSIONS

6.1. Summary of Results

This thesis has developed a methodology to construct a resource-
usage/reliability/performability model for a complex system based on real data. The model
obtained is capable of reflecting both the normal and error behavior of the system. Both
hardware and software reliability and their interactions are modeled. The effect of
recovery through the built-in recovery mechanisms is also considered. By modeling the
recovery process we are able to evaluate the severity of errors in general and the cost of
specific error type in particular. Low-level error and resource-usage data to develop the
model was collected on an IBM 3081 machine running the MVS operating system. The
results of this research suggest that other production systems should be similarly analyzed
so that a body of realistic data on computer error (including failure) and recovery models

is available.

Chapter 2 described the development of the model. using the low level data on
resource usage and errors. A statistical clustering method (X-means clustering) was
employed to characterize the resource usages into a few workload clusters. A two-level
error data reduction (error coalescing and grouping) scheme was used to identify ‘individual
error incidents. Results showed that about 17% of errors are multiple errors (believed to be

multiple manifestations of the same problem). The state-transition diagram for a multiple

79

error was obtained to study the interaction between system components (hardware and

software). For example, it was seen that software and disk errors were strongly correlated.

From the measurement data it was seen that the holding times in key operational and
error states were not simple exponentials. A semi-Markov process was used to model the
system behavior. This (semi-Markov) assumption was also validated by comparing the
state occupancy probabilities predicted by the model with the actual state occupancy proba-

bilities estimated from observed data. The results show that the proposed model provided a

fairly accurate prediction of the real behavior.

The analysis of model behavior was performed in Chapter 3. The analysis showed
that on-line recovery is highly effective and' provides the system with the ability to tolerate
many faults and recover almost instantaneously. An analysis to extract the effect of the
workload on the error probability showed that not only does a higher workload result in a
higher error probability (for similar holding time), but the error probability also increases
with increased holding time in a particular workload state. In other words, the error pro-
bability appears to be a function of the absolute amount of resource consumed. be it
through increased workload and/or increased holding times. An explanation for this "wear
out” phenomenon is not clear since a large majority of the collected errors are transient, but
it certainly calls into question the validity of the frequently used constant error probabil-
ity assumption used in reliability modeling.

The significance of the useof a semi—Ma;kov model, as opposed to the simple Markov
model, to describe the overall resource-usage/error/recovery process was also investigated.
The results showed that a simple Markov model frequently overestimates the uncondi-
tional transition probabilities and underestimates the variance of the first passage times to

the error states. The overestimation can lead to an unduly conservative reliability predic-

80

tion and the underestimation may lead to unduly optimistic reliability prediction. Both

over- and under- estimations are not desirable.

In Chapter 4, the software error data was used to build a software reliability model to
describe the error and recovery processes in the MVS operating system. The semi-Markov
model developed provided a quantification of the operating system error characteristics and
also the interaction between different types of OS errors. We estimate that in only 0.5% of
the cases the measured software system is unable to recover. A detailed model and analysis
of multiple software errors, (which constitute approximately 17% of all software errors)
was provided, showing how a single software problem can have multiple manifestations.
To investigate the validity of this model, the duration of a multiple error predicted from
the model was compared with the value estimated from the observed data. The agreement

between two results was found to be within 1%.

A measurement-based performability model was discussed in Chapter 5. A reward
function, based on the service rate and the error rate in each state, was proposed. In order
to investigate the impact due to different errors, the expected reward rate, as well as the
cumulative reward, at time ¢ were estimated. The results show that the software error
(SWE) degrades the system performance more severely than the disk error (DASD)
although the error probability of DASD errors is about twice as much as that of SWE
errors (0.169 versus 0.085). This may be due to the cost for DASD errors, which is less
than that for SWE errors, i.e., the reward rate in DASD state is higher than that in SWE
state. If, however, both error types result in system failure then, as expected, the DASD

error degrades the system performance more severely than the SWE error.

The system performability under a Markov assumption is also estimated and com-

pared with that estimated from the more realistic semi-Markov model. It was found that

81

the Markov assumption overestimates the system performability and that the degree of
overestimation increased with increased system operation time. Once again, this indicates
that the traditional Markov process is not good enough to model a computer system and to

provide accurate predictions.

6.2. Suggestions for Future Research

The results of this study suggest that other systems be similarly studied so that a -
wide body of realistic results on computer system hardware and software performability
are available. This is useful both, from the point of view of validating existing analytical

models and from the point of view of generating realistic models of system behavior.

A possible extension is the area of adaptive model construction. The workload and
error clustering methods employed here have potential for use in an adaptive algorithm
which is capable of real-time model construction. The use of such models for adaptive tun-
ing for optimum performability under various conditions needs to be investigated. To be
successful such a system would require learning capabilities so as to use valid past informa-
tion together with some knowledge of the environment for both reconfiguration under

failure and for system tuning.

In this thesis we have used past data on errors and workload for model construction.
It would be interesting to investigate the possibility of doing the same on the basis of data
generated from error/failure injection on a prototype or into a simulation model of a sys-
tem. Such a procedure has the potential of providing realistic feedback to system designers
early in the development stage. A comparison of the results from such a model with those

obtained through analytical models would be instructive as well.

[1]
(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

{10]

[11]
[12]

[13]

82

REFERENCES

Castillo, X. and Siewiorek, D.P., “A Performance-Reliability Model for Computing
Systems,” JEEE, 1980.

Castillo, X. and Siewiorek, D.P., "A Workload Dependent Software Reliability
Prediction Model,” in Proceedings of the 12th International Symposium on Fault-
Tolerant Computing, Santa Monica, California, pp. 279-285, June 22-24, 1982.

Kulkarni, V.G., Nicola, V.F., Smith, R.M., and Trivedi. K.S., “Numerical Evaluation
of Performability Measures and Job Completion Time in Repairable Fault-Tolerant
Systems,” in Proceedings of the 16th International Symposium on Fault-Tolerant
Computing, Vienna, Austria, pp.252-257, July 1-4, 1986.

Meyer., I.F., "Closed-Form Solutions of Performability,” IEEE Transactions on
Computers, pp. 648-657, July 1982.

Geist, R.M. and Trivedi, K., “Ultrahigh Reliability Prediction for Fault-Tolerant
Computer Systems,” IEEE Transactions on Computers, pp. 1118-1127, December
1983.

Trivedi, K., Dugan. J.B., Geist. R., and Smotherman, M.. “Modeling Imperfect
Coverage in Fault-Tolerant Systems.” in Proceedings of the I4th International
Symposium on Fault-Tolerant Computing, Kissimme, Florida. pp. 77-82, June 20-22,
1984.

Ng. Y.W. and Avizienis, A.A., “A Unified Reliability Model for Fault-Tolerant
Computers,” IEEE Transactions.on Computers, pp. 1002-1011, November 1980.

Goyal, A. and Tantawi, A.N., “Numerical Evaluation of Guaranteed Availability,” in
Proceedings of the 15th International Symposium on Fault-Tolerant Computing, Ann
Arbor, Michigan, pp. 324-329, June 19-21, 1985.

Schoen, O., “On a Class of Integrated Performance/Reliability Models based on
Queuing Networks,” in Proceedings of the 16th International Symposium on Fault-
Tolerant Computing, Vienna, Austria, pp. 90-95, July 1-4, 1986.

Iyer. R.K.. Rossetti, D.J., and Hsueh, M.C., “Measurement and Modeling of Computer
Reliability as Affected by System Activity,” ACM Transactions on Computer Systems,
vol. 4, no. 3, pp. 214-237, August, 1986.

Goel, A.L., “Software Reliability Models: Assumptions and Applicability,” IEEE
Transactions on Software Engineering, vol. SE-11, pp. 1411-1423, December 1985.

Yamada, S. and Osaki, S., “Software Reliability Growth Modeling,” IEEE
Transactions on Software Engineering, vol. SE-11, pp. 1431-1437, December 19835.

Musa, J., “The Measurement and Management of Sofware Reliability,” IEEE
Proceedings. vol. 68, pp. 1131-1143, September 1980.

[14]

[15]

[16]

(17]

(18]

[19]

(20]

[21]

[25]
[26]

[27]

[28]

[29]

83

Littlewood. B, “Theories of Software Reliability: How good are they and how can
they be improved?,” IEEE Transactions on Software Engineering, vol. SE-6, pp.
489-500, September 1930.

Iyer, R. K. and Velardi, P., “Hardware-Related Software Errors: Measurement and
Analysis,” IEEE Transactions on Software Engineering, vol. SE-11, no. 2, pp. 223-
231, February 1985.

Kelly, J. and Avizienis, A.A., “A Specification-Oriented Multi-Version Software
Experiment,” in Proceedings of the 13th International Symposium on Fault-Tolerant
Computing, Milano, Italy, pp. 120-126, June 28-30, 1983.

Beounes, C and Laprie, J.C., “Dependability Evaluation of Complex Computer
Systems: Stochastic Petri Net Modeling,” in Proceedings of the 15th International
Symposium on Fault-Tolerant Computing, Ann Arbor, Michigan, pp. 364-369, June
19-21, 1985.

Castillo, X., A Compatible Hardware/Software Reliability Prediction Model. PhD
Thesis, Carnegie-Mellon University, July, 1981.

IBM Corperation, “MVS Architecture Resource Measurement Facility (RMF)
Reference and User's Guide,” IBM publications, vol. LC28-1138-1.

Ferrari, D., Serazzi, G., and Zeigner, A., Measurement and Tuning of Computer
Systems. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1981.

MacQueen, J.., “Some Methods for Classification and Analysis of Multivariate
Observations,” in Proceedings of the Fifth Berkeley Symposium on Mathematical
Statistics and Probability, vol. 1, Berkeley, California, pp. 281-297, June 21-July 18,
1965.

Spath, H, Cluster Analysis Algorithms. West Sussex, England: Ellis Horwood Ltd..
1980.

IBM Corperation, Environmental Record Editing & Printing Program. International
Business Machines Corporation, 1984.

Iyer, R.K.. Young, L.T., and Sridhar, V., “Recognition of Error Symptoms in Large
Systems,” in Proceedings of the 1986 IEEE-ACM Fall Joint Computer Conference,
Dallas, Texas, pp. 797-806, November 2-6, 1986.

Howard. Ronald A., Dynamic Probabilistic Systems. New York: John Wiley & Sons,
Inc... 1971.

Trivedi, K.S.. Probability & Statistics with Reliability, Queuing, and ComputerScience
Applications. Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1982.

Hsueh, M.C., Iyer, R.K., and Trivedi. K.S.., “A Measurement-Based Performability
Model for a Multiprocessor System,” in Proceedings of the 2nd International

Workshop on Applied Mathematics and Performance/Reliability Models of
Computer /Communication Systems. Rome, Italy, May 25-29, 1987.

Smith, R.M., Trivedi. K.S.. and Nicola. V.F., “The Analysis of Computer Systems
Using Markov Reward Processes,” 1987.

Sahner, R.A. and Trivedi, KS.. “SHARPE: Symbolic Hierachical Automated
Reliability and Performance Evaluator,” in User’s Guide, Durham, NC, September
1986.

84

APPENDIX A

(D. Error Clustering

Identical errors occurring within § minutes of each other were coalesced into a single
event. This was done to ensure that the analysis is not biased by failure records relating to
the same problem. The clustering algorithm analyzes the data and merges observations

which occur in rapid succession and relate to the same problem. For each failure point, the

following test was performed :

IF <error type> = <type of previous error> AND

<time away from previous error> < 5 minutes
THEN

<fold error into cluster being built>
ELSE

<start a new cluster>

The result is a set of clustered errors. Associated with each cluster is information consist-
ing of error classifications, number of points in the cluster, time of first and last errors in

the cluster, and a variety of status data provided by the hardware and operating system.

(ID. Error Grouping

A visual examination of the error clusters showed the existence of sets of clusters
occurring within a short time interval. The close time proximity among some clusters

means a substantial increase in the system error rate during that period. The high error

85

rate introduces the suspicion that the errors occurring during the high error rate period may
be related, i.e., different errors may be due to a single cause, to multiple but related causes.
or to multiple and independent causes. Therefore, the high error rate periods are formed by
grouping all error clusters occurring within a small time interval of each other. This inter-
val was chosen to be 5 minutes. The result is a set of grouped errors. The primary
difference between a cluster and a group is that clusters contain only occurrences of the
same error (same error type and machine state), whereas groups ccntain occurrence of

different errors (different error type or machines state).

0.

86
APPENDIX B
The Characteristics of the Resource-Usage/Error/Recovery Model
Stochastic transition probability matrix.
(Due to the size of the matrix, it is broken into two parts, (a) and (b).)
W, 0 0.351 0.055 0.108 0.135 O 0.216 0.027 0.108
w, 0.019 O 0 0.057 0.170 O 0.113 0.132 0.019
W, 0 0 0 1 0 0 0 0 0
W, 0.143 0.048 O 0 0.143 0.048 0048 0.048 O
w, 0.023 0.045 O 0 0 0.015 0.046 0.099 0.038
W, 0.091 O 0 0 0 0 0091 O 0.091
W 0.034 0.034 O 0.013 0.054 O 0 0.087 0.067
W, 0.040 0.011 O 0 0.022 O 0.051 O 0.069
W 0.093 O 0 0 0.007 O 0.015 0063 O
CPU 0 0 0 0 0 0 0 0 0
CHAN | O 0 0 0 0 0 0 0 0
SWE 0 0 0 0 0 0 0 0 0
DASD | O 0 0 0 0 0 0 0 0
MULT | O) 0 0 0 0 0 0 0
HWR 0.018 0.036 O 0.014 0.013 0.013 0.144 0.314 0.329
SWR 0.006 0.046 O 0.008 0.160 0.007 0.183 0.286 0.306
ALT 0 0 0 0 0 0 0 0 0
OFFL 1 0 0 0 0 0 0 0 0
(a)

C . 2

(.

87
CPU CHAN SWE DASD MULT HWR SWR ALT OFFL
W, 0 0 0 0 0 0 0 0 0
w, 0 0.019 0.151 0.226 0.094 ¢ 0 0 0
W, 0 0 0 0 0 0 0 0 0
W, 0 0 0.143 0.381 0 0 0 0 0
v, 0 0.015 0.227 0.386 0106 O 0 0 0
W 0 0 0.091 0.545 0091 O 0 0 0
W 0 0.007 0.262 0.383 0060 O 0 0 0
W, 0 0.026 0.208 0.482 0091 O 0 0 0
Wg 0 0.007 0.231 0.502 0.082 0 0 0 0
CPU 0 0 0 0 0 1 0 0 0
CHAN 0 0 0 0 0 1 0) 0
SWE 0 0 0 0 0 0.5 0.5 0 0
DASD 0 0 0 0 0 1 0 0 0
MULT 0 0 0 0 0 0.643 0.355 0 0
HWR 0 0 0 0 0 0 0.017 0 0
SWR 0 0 0 0 0 0 0 0 0.003
ALT 0 0 0 0 0 o 0 0 0
OFFL 0 0 0 0 0 0 0 0 0

(b)

Waiting and holding time densities. Constant sojourn times are assigned in Wy, W,,

CPU, CHAN and recovery states. The others are shown below.

Waiting time density of W,

04

Prob.

£ (£)=0.00195 ™% + 0.52483 ¢~01¥
+ 0.0001555 ¢ ~0:0010%

P PR N T o IO

20 40 60 80 100 120
Duration (min.)

Waiting time density of W,

Waiting time density for W,

Prob.

R TP e S,

20 40 60
Duration (min.)

Waiting time density for W,

Waiting/holding time densities for W,

0.2[

Prob.

0.0L ..

£ (@) =0.00975 e % + 0.0005774 ¢ 000102
+ 0.000105 ¢ ~>0004%6L

20 40 60 80 100 120
Duration (min.)

Holding time density to W,

88

-\ -

Waiting/holding time densities for W,

Prob.

Prob.

Prob.

0.4

- WD D G W D e TP WD L S D AR WS WS D M e Em EE WP WD b e wm e o . W A]

20 40 60 80 100 120
Duration

Holding time density to DASD

£ (¢) = 0.000728 ¢ %%
+ 0.002085 (e—0.001039t - e—0.0047974¢)

- wn - - - et w En e - A W W e s e M W e e e e A e e o w E w ==

20 40 60 80 100 120
Duration

Holding time density to SWE

() =0.0034 ¢7¥
+0.00121 (3—0.00148« .8-0.007780%)

| ENENTITE IWETSTIT S DS IS IWUrI I PO aTara

20 40 60 80 100 120
Duration

Holding time density to MULT

g

{

~ Waiting/holding time densities for W,

' H
) !

Waiting/holding time densities for W,

01 g e g e e ———
£ () = 0.00087 ¢ 00
2 +0.0006748 (0000887 __ ,~0.013283%

Prob.

0 20 40 60 80 100 120
Duration

Holding time density to the others

Waiting time density of W,

0.4

f (&) = 0.00154 ¢ 200
+ 0.002142 (e~0002193 _

0.0059258¢
e)

1

D ettt T T T I

Prob. 02 ¢ e e o222

0.0 . P N R —a a1 N Ml N
0 10 20 30
Duration (min.)

Waiting time density of W

-

05bcceeo__ £0)=000165 2% + 0000541 £ 0024 ___]
L ~0.0006405¢
Prob. +0.000147 ¢

P PN RS T o dldech A Pl WPUPNPE IPEPUTPT IPUPEP e S |
0 20 40 60 80 100 120
Duration (min.)

Holding time density to DASD

Waiting/holding time densities for W

02f - mm-- L) =000128 727 +0.000513 ¢ 00%_
i + 0.0001149 ¢ 0000426
Prob.
o_o-L...u.l..l..L.l...Ll...Ll.. oS D ;A.lLA..lg.
0 20 40 60 80 100 120
Duration (min.)
Holding time density to SWE
s £(£) =0.00123 ™% + 0.000543 ¢~
. + 0.000113 g~ 0:000433%
Prob. 0.2 --
0.0 e b st by 'S IS e I |
0 20 40 60 80 100 120
Duration (min.)
Holding time density to the others
Waiting/holding time densities for W,
0.5 - f@)=000136e"%]
+ 0.0008061 (e 000117 _ e—0.0130736¢)
Prob.
00044.. adeded b 2 e L e — I L1 3 4 3.0,
0 20 40 60 80 100 120
Duration (min.) '
Holding time density to DASD

91

Waiting/holding time densities for W,

Prob.

60 80 100 120
Duration (min.)

Holding time density to MULT

-t n m e D e en ME WD R s o . A W - e e s s w - wm wn

Prob.

-l o e e e e e e e - = e e e o

80 100 120
Duration (min.)

Holding time density to SWE

Duration (min.)

Holding time density to the others

+
o
&
fawrd
(=]
(5]
W
O
N\
[
4
[=3
2
8
>
|
[\
¢
3
3
&
¥
~—

Waiting/holding time densities for W,

Prob.

Prob.

Prob.

0.0L

02f

o.oh — TN U BT U W e srers o b
0 20 40 60 80 100 120

™y

F (&) = 0.00094 ¢ %%
. + 0.0008355 (3—0.000937t ~_ e—0.0065945¢)

0.2F foc e mmmm e m e e eeeacaoaen E

0 20 40 60 80 100 120
Duration (min.)

Holding time density to DASD

s f () = 0.00085 ¢~ >0
[+ 0.000701(8—0.0007163 - e—0.0046877t)

s armree 0 WP C ey, S ST e SR

- wn s wn Mn s A e e . W R e N S W e M L e s ot e e W e e e e

80 100 120
Duration (min.)

Holding time density to SWE

() = 0.000146 ¢ %% + 0.000939 ¢ 7%
+ 0.000033 ¢ 00002102

L.

e EN\r wn wn v S . YR MR R W WD ew W AP WA wn m TP D WE Am W M AR R R WR W R M e wm e e e

Duration (min.)

Holding time density to the others

93

Waiting time

0.5

Prob.

o 5 10 15

Prob.

0.10

Prob. 0.5}

densities for Error States
------- () =003752 + 000770 o __]
+ 0.008365 ¢ 1%% 4 00001861 ¢ 2092137

" 3

Duration (min.)

Waiting time density of DASD

£(¢) =0.041181 e >**1¥ 1 0,0002704 902607

- n . D WD e - . e - e - e e A W S e e e M EE - dn = W e e = mm e wm en w ow o

—t= ' 1

5 10 15
Duration (min.)

Waiting time density of SWE

£ (&) = 0.004371 (¢ 003817 _ ,—0.0301092¢

0 5 10 15
Duration (min.)
Waiting time density of MULT

94

95

APPENDIX C

Semi-Markov to Markov Conversion

The state conversions of the resource-usage/error/recovery process from a semi-
Markov model to Markov model is demonstrated in this appendix. Here, we assume that

the model is an independent semi-Markov process because of the limitation of SHARPE.

The CPU bound workload state is used to estimate the system’'s performability. State
W, is combined with W, because W, has very few observations. CHAN error state is also
ignored because it has very few observations. The semi~-Markov to Markov conversion of
the workload states are shown from Figure (a) through (g) and the conversion of three
error states are shown from Figure (h) through (j). After the conversion, the over‘all mo;el

is expanded from 15 states to 34 states.

EXP(0.01)

EXP(0.00103)

EXP(0.0005528)

(a). W, state

EXP(0.005)

EXP(0.002163)

0.49119

EXP(0006993)

(b). W, state

96

0.29

0.71

0.385

0.615

EXP(0.003)

EXP(0.001039) EXP(0.0047974)

(c). W, state

EXP(0.004)

EXP(0.002193) EXP(0.0059258)
(d). Wy state

EXP(0.006)

EXP(0.0004539)
(e)- W6 state

97

98

EXP(0.004)

N

EXP(0.000998) EXP(0.0144421)

(f). W, state

EXP(0.002)

0.073

EXP(0.001030)

0.76988

(g). W, state

EXP(0.0021377)

(h). DASD state

EXP(0.044518)

0.9250

0.0750

EXP(0.0036075)

(i). SWE state

EXP(0.03817) EXP(0.0301092)

——(O—O—

(). MULT state

99

100

VITA

Mei-Chen Hsueh was born on September 21, 1950 in Taiwan, Republic of China. She
received her B.S. degree and M.S. degree both in Mathematics from Providence College,
Taiwan. 1972 and Portland State University. Portland. Oregon, 1981, respectively. She

obtained her Ph.D. degree in Computer Science from the University of Illinois at Urbana-

Champaign, 1987.

She joined the Department of Industrial Engineering. Fen-Chia University as a full
time teaching assistant from 1972 to 1974 and worked as a quality assurance engineer for-
Ampex Corporation, Taiwan, from 1975 to 1979. While attending Portland State Univer-
sity she worked as a teaching assistant for the Department of Mathematics and as a pro-
gramming consultant for the Computer Center. After graduation in 1981, she joined Float-
ing Point Systems, Inc. as a software engineer and left as a senior software engineer in 1983.
As a graduate student in the University of Illinois, she was a research assistant in both the
Department of Political Science (1983-1984) and the Computer Systems Group, Coordi-

nated Science Laboratory (1984-1987).

UNCLASSIFIED

ECURITY CLASSIFI ION HiS PA

REPORT DOCUMENTATION PAGE

A,
1a. REPORT SECURITY CLASSIFICATION

Unclassified

1b. RESTRICTIVE MARKINGS
None '

st —————————————————————————
2a. SECURITY CLASSIFICATION AUTHORITY

3. DISTRIBUTION / AVAILABILITY OF REPORT

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE

Approved for public release;
distribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S)
UILU-ENG-87-2258 (CSG-71)

5. MONITORING QRGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION
Coordinated Science Lab
University of Illinois

6b. OFFICE SYMBOL
(If applicable)

N/A

7a. NAME OF MONITORING ORGANIZATION
NASA, IBM, and ONR

6¢. ADDRESS (City, State, and ZIP Code)

1101 W. Springfield Avenue
Urbana, IL 61801

7b. ADDRESS (City, State, and ZIP Code) LBM: T. J. watson
Research Center

JAsa P.0. Box 218
Langley Research Ctr. Yorktown Heights. NY
Hampton, VA 23665 BESEO™ ovEey®?

8a. NAME QOF FUNDING / SPONSORING
ORGANIZATION NAS A, IBM, and
JSEP

8b. OFFICE SYMBOL
(If applicable)

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
NASA: NAG-1-613 JSEP: N00014-84-C-0149

8¢. ADDRESS (City, State, and ZIP Code)

See block 7b.

10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT
NO.

TASK WORK UNIT
ELEMENT NO. NO.

ACCESSION NO.

11. TITLE (Include Security Classification)

Measurement-Based Reliability/Performability Models

12. PERSONAL AUTHOR(S . .
) Hsuen, Mei-Chen

Technical

13a. TYPE OF REPORT 13b. TIME COVERED

FROM TO

16. SUPPLEMENTARY NOTATION

14. DATE OF REPORT (Year, Month, Day) ['S. PAGE COUNT

17. COSATI CODES

FIELD GROUP SUB-GROUP

18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
reliability, measures, research usage, failure, performa-
bility, semi-Markov, phase-type explanation, reward

lative reward is described.

'9. ABSTRACT (Continue on reverse if necessary and identify by block number)

This report describes measurement-based models based on real error-data collected on a
multi-processor system. Models development from the raw error-data to the estimation of cumu-

A workload/-eliability model is developed based on low-level error and resource usage data
collected on an IBM 3081 system during its normal operation in order to evaluate the resource-
usage/error/recovery process in a large mainframe system. Thus, both normal and erroneous
behavior of the system are modeled. The results provide an understanding of the different types of
errors and recovery processes. The measured data show that the holding times in key operational
and error states are not simple exponentials and that a semi-Markov process is necessary to model
the system behavior. A sensitivity analysis is performed to investigate the significance of using a
semi-Markov process, as opposed to a Markov process, to model the measured system.

20. DISTRIBUTION / AVAILABILITY OF ABSTRACT
EIunCLASSIFIEDUNLIMITED [SAME AS RPT.

CJoTiC USERS

21. ABSTRACT SECURITY CLASSIFICATION
Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL

22b. TELEPHONE (include Area Code) | 22c. OFFICE SYMBOL

OD FORM 1473, 83 MAR

83 APR edition may be used until exhausted.
All other editions are obsolete.

SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

UNCLASSIFIED
SECURITY CLASSIFICATION OF THiS PAGK

7b. Address (continued)

800 N. Quincy St.
Arlington, VA 22217 (ONR)

19. Abstract (continued)

A software reliability model is also developed based on low-level error data from the MVS
operating system running on an IBM 3081 machine 1o describe the software error and recovery pro-
cess. The semi-Markov model developed provides a quantification of system error characteristics
and the interaction between different types of errors. As an example, we provide a detailed model
and analysis of multiple errors, which constitute approximately 17 percent of all software errors
and result in considerable recovery overhead. In addition, a measurement-based performability
model based on real error-date collected is proposed. A reward function, based on the service rate
and the error rate in each state, is defined in order to estimate the performability of the system and
to depict the cost of different error types and recovery procedures.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

N . E .. .

